Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations

被引:47
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [3 ]
Lopes, Antonio M. [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
关键词
Fractional integro-differential equation; Spectral collocation method; Jacobi-Gauss quadrature; Riemann-Liouville derivative; NUMERICAL-SOLUTION; DIFFUSION EQUATION; ORDER; TRANSPORT; MATRIX;
D O I
10.1016/j.cnsns.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new shifted Jacobi-Gauss-collocation (SJ-G-C) algorithm is presented for solving numerically several classes of fractional integro-differential equations (FI-DEs), namely Volterra, Fredholm and systems of Volterra FI-DEs, subject to initial and nonlocal boundary conditions. The new SJ-G-C method is also extended for calculating the solution of mixed Volterra-Fredholm FI-DEs. The shifted Jacobi-Gauss points are adopted for collocation nodes and the FI-DEs are reduced to systems of algebraic equations. Error analysis is performed and several numerical examples are given for illustrating the advantages of the new algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 50 条
  • [31] Convergence of the collocation methods for singular integro-differential equations in Lebesgue spaces
    Caraus, Iurie
    Mastorakis, Nikos E.
    [J]. WSEAS: ADVANCES ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2008, : 336 - +
  • [32] Collocation methods for fractional integro-differential equations with weakly singular kernels
    Jingjun Zhao
    Jingyu Xiao
    Neville J. Ford
    [J]. Numerical Algorithms, 2014, 65 : 723 - 743
  • [33] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Sharma, Shiva
    Pandey, Rajesh K.
    Kumar, Kamlesh
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1649 - 1656
  • [34] Collocation methods for fractional integro-differential equations with weakly singular kernels
    Zhao, Jingjun
    Xiao, Jingyu
    Ford, Neville J.
    [J]. NUMERICAL ALGORITHMS, 2014, 65 (04) : 723 - 743
  • [35] On the Wavelet Collocation Method for Solving Fractional Fredholm Integro-Differential Equations
    Bin Jebreen, Haifa
    Dassios, Ioannis
    [J]. MATHEMATICS, 2022, 10 (08)
  • [36] Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method
    Amin, Rohul
    Ahmad, Hijaz
    Shah, Kamal
    Hafeez, M. Bilal
    Sumelka, W.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 151
  • [37] An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
    AL-Safi, Mohammed G. S.
    [J]. BAGHDAD SCIENCE JOURNAL, 2018, 15 (03) : 344 - 351
  • [38] Numerical solution of fractional integro-differential equations by a hybrid collocation method
    Ma, Xiaohua
    Huang, Chengming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6750 - 6760
  • [39] SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 203 - 224
  • [40] Jacobi Spectral Collocation Method Based on Lagrange Interpolation Polynomials for Solving Nonlinear Fractional Integro-Differential Equations
    Yang, Xingfa
    Yang, Yin
    Chen, Yanping
    Liu, Jie
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (06) : 1440 - 1458