A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations

被引:0
|
作者
Daniel Baffet
机构
[1] University of Basel,Department of Mathematics and Computer Science
来源
关键词
Fractional differential equations; Volterra equations; Gaussian quadratures; Kernel compression; Local schemes;
D O I
暂无
中图分类号
学科分类号
摘要
A scheme for approximating the kernel w of the fractional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral by a linear combination of exponentials is proposed and studied. The scheme is based on the application of a composite Gauss–Jacobi quadrature rule to an integral representation of w. This results in an approximation of w in an interval [δ,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\delta ,T]$$\end{document}, with 0<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\delta $$\end{document}, which converges rapidly in the number J of quadrature nodes associated with each interval of the composite rule. Using error analysis for Gauss–Jacobi quadratures for analytic functions, an estimate of the relative pointwise error is obtained. The estimate shows that the number of terms required for the approximation to satisfy a prescribed error tolerance is bounded for all α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, and that J is bounded for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, and δ∈(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,T)$$\end{document}.
引用
收藏
页码:227 / 248
页数:21
相关论文
共 50 条
  • [41] Jacobi spectral collocation method for solving fractional pantograph delay differential equations
    Changqing Yang
    Jianhua Hou
    Xiaoguang Lv
    Engineering with Computers, 2022, 38 : 1985 - 1994
  • [42] The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations
    Khalil, Hammad
    Khan, Rahmat Ali
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1452 - 1472
  • [43] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Wu, Qingqing
    Wu, Zhongshu
    Zeng, Xiaoyan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 509 - 526
  • [44] Jacobi spectral collocation method for solving fractional pantograph delay differential equations
    Yang, Changqing
    Hou, Jianhua
    Lv, Xiaoguang
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 1985 - 1994
  • [45] The a posteriori error estimate in fractional differential equations using generalized Jacobi functions
    Tang, Bo
    Wang, Huasheng
    AIMS MATHEMATICS, 2023, 8 (12): : 29017 - 29041
  • [46] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Qingqing Wu
    Zhongshu Wu
    Xiaoyan Zeng
    Communications on Applied Mathematics and Computation, 2021, 3 : 509 - 526
  • [47] Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials
    Tavasani, B. Bagherzadeh
    Sheikhani, A. H. Refahi
    Aminikhah, H.
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (01) : 35 - 51
  • [48] Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations
    Khaled A Gepreel
    Advances in Difference Equations, 2014
  • [49] Generalized Jacobi-Galerkin method for nonlinear fractional differential algebraic equations
    Ghanbari, F.
    Ghanbari, K.
    Mokhtary, P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5456 - 5475
  • [50] Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    Suragan, D.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 326 - 346