A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations

被引:0
|
作者
Daniel Baffet
机构
[1] University of Basel,Department of Mathematics and Computer Science
来源
关键词
Fractional differential equations; Volterra equations; Gaussian quadratures; Kernel compression; Local schemes;
D O I
暂无
中图分类号
学科分类号
摘要
A scheme for approximating the kernel w of the fractional α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral by a linear combination of exponentials is proposed and studied. The scheme is based on the application of a composite Gauss–Jacobi quadrature rule to an integral representation of w. This results in an approximation of w in an interval [δ,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\delta ,T]$$\end{document}, with 0<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\delta $$\end{document}, which converges rapidly in the number J of quadrature nodes associated with each interval of the composite rule. Using error analysis for Gauss–Jacobi quadratures for analytic functions, an estimate of the relative pointwise error is obtained. The estimate shows that the number of terms required for the approximation to satisfy a prescribed error tolerance is bounded for all α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, and that J is bounded for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, and δ∈(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,T)$$\end{document}.
引用
收藏
页码:227 / 248
页数:21
相关论文
共 50 条
  • [11] Fractional Jacobi-Picard iteration method using Gauss-Seidel technique for solving a system of nonlinear fractional differential equations
    Ansari, Soheyla
    Akrami, Mohammad Hossein
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 261 - 272
  • [12] An efficient numerical scheme for solving a general class of fractional differential equations via fractional-order hybrid Jacobi functions
    Barary, Zeinab
    Cherati, AllahBakhsh Yazdani
    Nemati, Somayeh
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [13] On shifted Jacobi spectral approximations for solving fractional differential equations
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8042 - 8056
  • [14] Reproducing Kernel Method for Fractional Riccati Differential Equations
    Li, X. Y.
    Wu, B. Y.
    Wang, R. T.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [15] θ-SCHEME FOR SOLVING CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Doan, Thai son
    Huong, Phan thi
    Kloeden, Peter e.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 25
  • [16] Numerical scheme to solve a class of variable–order Hilfer–Prabhakar fractional differential equations with Jacobi wavelets polynomials
    BBagherzadeh Tavasani
    AHRefahi Sheikhani
    HAminikhah
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (01) : 35 - 51
  • [17] Numerical scheme to solve a class of variable—order Hilfer—Prabhakar fractional differential equations with Jacobi wavelets polynomials
    B. Bagherzadeh Tavasani
    A. H. Refahi Sheikhani
    H. Aminikhah
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 35 - 51
  • [18] A Jacobi Gauss-Lobatto and Gauss-Radau collocation algorithm for solving fractional Fokker-Planck equations
    Hafez, Ramy M.
    Ezz-Eldien, Samer S.
    Bhrawy, Ali H.
    Ahmed, Engy A.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1431 - 1440
  • [19] A new fractional Jacobi elliptic equation method for solving fractional partial differential equations
    Bin Zheng
    Advances in Difference Equations, 2014
  • [20] A new fractional Jacobi elliptic equation method for solving fractional partial differential equations
    Zheng, Bin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,