Hamming weight distributions of multi-twisted codes over finite fields

被引:0
|
作者
Varsha Chauhan
Anuradha Sharma
Sandeep Sharma
Monika Yadav
机构
[1] IIIT-Delhi,Department of Mathematics
来源
关键词
Gauss sums; Few weight codes; Equidistant codes; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} denote the finite field of order q,  and let n=m1+m2+⋯+mℓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m_1+m_2+\cdots +m_\ell ,$$\end{document} where m1,m2,…,mℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1,m_2,\ldots ,m_\ell $$\end{document} are arbitrary positive integers (not necessarily coprime to q). In this paper, we explicitly determine Hamming weights of all non-zero codewords of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots ,m_\ell )$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} As an application of these results, we explicitly determine Hamming weight distributions of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots , m_{\ell })$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} Among these classes of multi-twisted codes, we identify two classes of optimal equidistant linear codes that have nice connections with the theory of combinatorial designs and several other classes of minimal linear codes that are useful in constructing secret sharing schemes with nice access structures. We illustrate our results with some examples, and list many optimal, projective and minimal linear codes belonging to these classes of multi-twisted codes.
引用
收藏
页码:1787 / 1837
页数:50
相关论文
共 50 条
  • [41] Constacyclic codes over finite fields
    Chen, Bocong
    Fan, Yun
    Lin, Liren
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1217 - 1231
  • [42] On constacyclic codes over finite fields
    Anuradha Sharma
    Saroj Rani
    Cryptography and Communications, 2016, 8 : 617 - 636
  • [43] Two classes of two-weight linear codes over finite fields
    Rong, Jianying
    Li, Fengwei
    Li, Ting
    AIMS MATHEMATICS, 2023, 8 (07): : 15317 - 15331
  • [44] CONSTACYCLIC AND QUASI-TWISTED HERMITIAN SELF-DUAL CODES OVER FINITE FIELDS
    Sangwisut, Ekkasit
    Jitman, Somphong
    Udomkavanich, Patanee
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (03) : 595 - 613
  • [45] Toric codes over finite fields
    Joyner, D
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (01) : 63 - 79
  • [46] On constacyclic codes over finite fields
    Sharma, Anuradha
    Rani, Saroj
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (04): : 617 - 636
  • [47] n-Dimension quasi-twisted codes of arbitrary length over finite fields
    Xiaotong Hou
    Jian Gao
    Journal of Applied Mathematics and Computing, 2022, 68 : 535 - 552
  • [48] Curves over finite fields and codes
    van der Geer, G
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 225 - 238
  • [49] LCD codes over finite fields
    Zoubir, N.
    Guenda, Kenza
    Seneviratne, Padmapani
    Aaron Gulliver, T.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [50] On the Hamming weight enumerators of self-dual codes over Zk
    Harada, M
    Oura, M
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (01) : 26 - 34