Hamming weight distributions of multi-twisted codes over finite fields

被引:0
|
作者
Varsha Chauhan
Anuradha Sharma
Sandeep Sharma
Monika Yadav
机构
[1] IIIT-Delhi,Department of Mathematics
来源
关键词
Gauss sums; Few weight codes; Equidistant codes; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} denote the finite field of order q,  and let n=m1+m2+⋯+mℓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m_1+m_2+\cdots +m_\ell ,$$\end{document} where m1,m2,…,mℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1,m_2,\ldots ,m_\ell $$\end{document} are arbitrary positive integers (not necessarily coprime to q). In this paper, we explicitly determine Hamming weights of all non-zero codewords of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots ,m_\ell )$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} As an application of these results, we explicitly determine Hamming weight distributions of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots , m_{\ell })$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} Among these classes of multi-twisted codes, we identify two classes of optimal equidistant linear codes that have nice connections with the theory of combinatorial designs and several other classes of minimal linear codes that are useful in constructing secret sharing schemes with nice access structures. We illustrate our results with some examples, and list many optimal, projective and minimal linear codes belonging to these classes of multi-twisted codes.
引用
收藏
页码:1787 / 1837
页数:50
相关论文
共 50 条
  • [31] COMPLETE WEIGHT ENUMERATORS OF A CLASS OF LINEAR CODES OVER FINITE FIELDS
    Yang, Shudi
    Kong, Xiangli
    Shi, Xueying
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, 15 (01) : 99 - 112
  • [32] THREE-WEIGHT AND FIVE-WEIGHT LINEAR CODES OVER FINITE FIELDS
    Kumar, Pavan
    Khan, Noor mohammad
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (03): : 345 - 364
  • [33] The burst weight distributions of maximum-Hamming-distance-separable codes
    Hamada, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) : 404 - 406
  • [34] EXTENSION THEOREMS FOR HAMMING VARIETIES OVER FINITE FIELDS
    Cheong, Daewoong
    Koh, Doowon
    Thang Pham
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 161 - 170
  • [35] Generalized Hamming Weights of Linear Codes From Quadratic Forms Over Finite Fields of Even Characteristic
    Liu C.
    Zheng D.
    Wang X.
    IEEE Trans. Inf. Theory, 2023, 9 (5676-5686): : 5676 - 5686
  • [36] On the Hamming distance of linear codes over a finite chain ring
    Norton, GH
    Salagean, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 1060 - 1067
  • [37] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Ma, Junru
    Luo, Jinquan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (01): : 101 - 115
  • [38] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Junru Ma
    Jinquan Luo
    Cryptography and Communications, 2021, 13 : 101 - 115
  • [39] Toric Codes over Finite Fields
    David Joyner
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 63 - 79
  • [40] n-Dimension quasi-twisted codes of arbitrary length over finite fields
    Hou, Xiaotong
    Gao, Jian
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 535 - 552