Hamming weight distributions of multi-twisted codes over finite fields

被引:0
|
作者
Varsha Chauhan
Anuradha Sharma
Sandeep Sharma
Monika Yadav
机构
[1] IIIT-Delhi,Department of Mathematics
来源
关键词
Gauss sums; Few weight codes; Equidistant codes; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} denote the finite field of order q,  and let n=m1+m2+⋯+mℓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m_1+m_2+\cdots +m_\ell ,$$\end{document} where m1,m2,…,mℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1,m_2,\ldots ,m_\ell $$\end{document} are arbitrary positive integers (not necessarily coprime to q). In this paper, we explicitly determine Hamming weights of all non-zero codewords of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots ,m_\ell )$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} As an application of these results, we explicitly determine Hamming weight distributions of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots , m_{\ell })$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} Among these classes of multi-twisted codes, we identify two classes of optimal equidistant linear codes that have nice connections with the theory of combinatorial designs and several other classes of minimal linear codes that are useful in constructing secret sharing schemes with nice access structures. We illustrate our results with some examples, and list many optimal, projective and minimal linear codes belonging to these classes of multi-twisted codes.
引用
收藏
页码:1787 / 1837
页数:50
相关论文
共 50 条
  • [21] Two-sided Galois duals of multi-twisted codes
    Taki Eldin, Ramy
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3459 - 3487
  • [22] Two-sided Galois duals of multi-twisted codes
    Ramy Taki Eldin
    Journal of Applied Mathematics and Computing, 2023, 69 : 3459 - 3487
  • [23] Multi-twisted additive self-orthogonal and ACD codes are asymptotically good
    Sharma, Sandeep
    Sharma, Anuradha
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
  • [24] Weight Distributions of Regular Low-Density Parity-Check Codes Over Finite Fields
    Yang, Shengtian
    Honold, Thomas
    Chen, Yan
    Zhang, Zhaoyang
    Qiu, Peiliang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) : 7507 - 7521
  • [25] Supersingular curves over finite fields and weight divisibility of codes
    Guneri, Cem
    McGuire, Gary
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 474 - 484
  • [26] MDS multi-twisted Reed-Solomon codes with small dimensional hull
    Singh, Harshdeep
    Meena, Kapish Chand
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 16 (3): : 557 - 578
  • [27] MDS multi-twisted Reed-Solomon codes with small dimensional hull
    Harshdeep Singh
    Kapish Chand Meena
    Cryptography and Communications, 2024, 16 : 557 - 578
  • [28] Homogeneous Weight Distributions of Cyclic Codes Over Finite Chain Rings
    Meng, Xiangrui
    Gao, Jian
    Cui, Qingxiang
    Fu, Fang-Wei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (02) : 955 - 974
  • [29] A class of linear codes with their complete weight enumerators over finite fields
    Kumar, Pavan
    Khan, Noor Mohammad
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (05): : 695 - 725
  • [30] A class of linear codes with their complete weight enumerators over finite fields
    Pavan Kumar
    Noor Mohammad Khan
    Cryptography and Communications, 2021, 13 : 695 - 725