Hamming weight distributions of multi-twisted codes over finite fields

被引:0
|
作者
Varsha Chauhan
Anuradha Sharma
Sandeep Sharma
Monika Yadav
机构
[1] IIIT-Delhi,Department of Mathematics
来源
关键词
Gauss sums; Few weight codes; Equidistant codes; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} denote the finite field of order q,  and let n=m1+m2+⋯+mℓ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m_1+m_2+\cdots +m_\ell ,$$\end{document} where m1,m2,…,mℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1,m_2,\ldots ,m_\ell $$\end{document} are arbitrary positive integers (not necessarily coprime to q). In this paper, we explicitly determine Hamming weights of all non-zero codewords of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots ,m_\ell )$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} As an application of these results, we explicitly determine Hamming weight distributions of several classes of multi-twisted codes of length n and block lengths (m1,m2,…,mℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2,\ldots , m_{\ell })$$\end{document} over Fq.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q.$$\end{document} Among these classes of multi-twisted codes, we identify two classes of optimal equidistant linear codes that have nice connections with the theory of combinatorial designs and several other classes of minimal linear codes that are useful in constructing secret sharing schemes with nice access structures. We illustrate our results with some examples, and list many optimal, projective and minimal linear codes belonging to these classes of multi-twisted codes.
引用
收藏
页码:1787 / 1837
页数:50
相关论文
共 50 条
  • [1] Hamming weight distributions of multi-twisted codes over finite fields
    Chauhan, Varsha
    Sharma, Anuradha
    Sharma, Sandeep
    Yadav, Monika
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (08) : 1787 - 1837
  • [2] Multi-twisted codes over finite fields and their dual codes
    Sharma, Anuradha
    Chauhan, Varsha
    Singh, Harshdeep
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 270 - 297
  • [3] Multi-twisted additive codes over finite fields
    Sandeep Sharma
    Anuradha Sharma
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 287 - 320
  • [4] Multi-twisted additive codes over finite fields
    Sharma, Sandeep
    Sharma, Anuradha
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (02): : 287 - 320
  • [5] Correction to: Multi-twisted additive codes over finite fields
    Sandeep Sharma
    Anuradha Sharma
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 451 - 453
  • [6] Multi-twisted additive codes over finite fields are asymptotically good
    Sandeep Sharma
    Anuradha Sharma
    Cryptography and Communications, 2023, 15 : 17 - 33
  • [7] Multi-twisted Additive Codes with Complementary Duals over Finite Fields
    Sharma, S.
    Sharma, A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2022, 58 (01) : 32 - 57
  • [8] Skew multi-twisted codes over finite fields and their Galois duals
    Sharma, Anuradha
    Chauhan, Varsha
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 : 297 - 334
  • [9] Multi-twisted additive codes over finite fields are asymptotically good
    Sharma, Sandeep
    Sharma, Anuradha
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (01): : 17 - 33
  • [10] Multi-twisted Additive Codes with Complementary Duals over Finite Fields
    S. Sharma
    A. Sharma
    Problems of Information Transmission, 2022, 58 : 32 - 57