On the classification of binary self-dual codes admitting imprimitive rank 3 permutation groups

被引:0
|
作者
B. G. Rodrigues
机构
[1] University of KwaZulu-Natal,School of Mathematics, Statistics and Computer Science
关键词
Imprimitive rank 3 groups; Binary self-dual codes; Automorphism groups; 20D45; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
One of the questions of current interest in coding theory is the following: given a finite non-solvable permutation group G acting transitively on a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, under what conditions on G are self-dual codes invariant under G existent or nonexistent? In this paper, this problem is investigated under the hypothesis that the group G is an imprimitive rank 3 permutation group. It is proven that if G is an imprimitive rank 3 permutation group acting transitively on the coordinate positions of a self-dual binary code C then G is one of M11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{M}}_{11}$$\end{document} of degree 22;Aut(M12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Aut}}({\mathrm{M}}_{12})$$\end{document} of degree 24; PSL(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(2,q)$$\end{document} of degree 2(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(q +1)$$\end{document} for q≡1(mod4);\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q {\equiv 1}{({\mathrm{mod}}\,4)};$$\end{document}PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document} odd and q an odd prime; PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 4$$\end{document} even and q an odd prime, and PSL(3,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(3,2)$$\end{document} of degree 14. When combined with a result on the classification of binary self-dual codes invariant under primitive rank 3 permutation groups of almost simple type this yields a result on the non-existence of extremal binary self-dual codes invariant under quasiprimitive rank 3 permutation groups of almost simple type.
引用
收藏
页码:113 / 134
页数:21
相关论文
共 50 条