On the classification of binary self-dual codes admitting imprimitive rank 3 permutation groups

被引:0
|
作者
B. G. Rodrigues
机构
[1] University of KwaZulu-Natal,School of Mathematics, Statistics and Computer Science
关键词
Imprimitive rank 3 groups; Binary self-dual codes; Automorphism groups; 20D45; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
One of the questions of current interest in coding theory is the following: given a finite non-solvable permutation group G acting transitively on a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, under what conditions on G are self-dual codes invariant under G existent or nonexistent? In this paper, this problem is investigated under the hypothesis that the group G is an imprimitive rank 3 permutation group. It is proven that if G is an imprimitive rank 3 permutation group acting transitively on the coordinate positions of a self-dual binary code C then G is one of M11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{M}}_{11}$$\end{document} of degree 22;Aut(M12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Aut}}({\mathrm{M}}_{12})$$\end{document} of degree 24; PSL(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(2,q)$$\end{document} of degree 2(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(q +1)$$\end{document} for q≡1(mod4);\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q {\equiv 1}{({\mathrm{mod}}\,4)};$$\end{document}PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document} odd and q an odd prime; PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 4$$\end{document} even and q an odd prime, and PSL(3,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(3,2)$$\end{document} of degree 14. When combined with a result on the classification of binary self-dual codes invariant under primitive rank 3 permutation groups of almost simple type this yields a result on the non-existence of extremal binary self-dual codes invariant under quasiprimitive rank 3 permutation groups of almost simple type.
引用
收藏
页码:113 / 134
页数:21
相关论文
共 50 条
  • [1] On the classification of binary self-dual codes admitting imprimitive rank 3 permutation groups
    Rodrigues, B. G.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (02) : 113 - 134
  • [2] On imprimitive rank 3 permutation groups
    Devillers, Alice
    Giudici, Michael
    Li, Cai Heng
    Pearce, Geoffrey
    Praeger, Cheryl E.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 649 - 669
  • [3] On imprimitive rank 3 permutation groups
    Devillers, Alice
    Giudici, Michael
    Li, Cai Heng
    Pearce, Geoffrey
    Praeger, Cheryl E.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 592 - 592
  • [4] On the existence of self-dual permutation codes of finite groups
    Fan, Yun
    Zhang, Guanghui
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 19 - 29
  • [5] On the existence of self-dual permutation codes of finite groups
    Yun Fan
    Guanghui Zhang
    Designs, Codes and Cryptography, 2012, 62 : 19 - 29
  • [6] On self-dual permutation codes
    Fan Yun
    Yuan Yuan
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (03) : 633 - 638
  • [7] ON SELF-DUAL PERMUTATION CODES
    樊恽
    袁媛
    Acta Mathematica Scientia, 2008, (03) : 633 - 638
  • [8] An Algorithm for Classification of Binary Self-Dual Codes
    Bouyuklieva, Stefka
    Bouyukliev, Iliya
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (06) : 3933 - 3940
  • [9] Classification of Binary Self-Dual Codes of Length 40
    Bouyukliev, Iliya
    Dzhumalieva-Stoeva, Maria
    Monev, Venelin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (08) : 4253 - 4258
  • [10] IMPRIMITIVE SOLVABLE RANK-3 PERMUTATION GROUPS
    DORNHOFF, L
    ILLINOIS JOURNAL OF MATHEMATICS, 1970, 14 (04) : 692 - +