On the classification of binary self-dual codes admitting imprimitive rank 3 permutation groups

被引:0
|
作者
B. G. Rodrigues
机构
[1] University of KwaZulu-Natal,School of Mathematics, Statistics and Computer Science
关键词
Imprimitive rank 3 groups; Binary self-dual codes; Automorphism groups; 20D45; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
One of the questions of current interest in coding theory is the following: given a finite non-solvable permutation group G acting transitively on a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, under what conditions on G are self-dual codes invariant under G existent or nonexistent? In this paper, this problem is investigated under the hypothesis that the group G is an imprimitive rank 3 permutation group. It is proven that if G is an imprimitive rank 3 permutation group acting transitively on the coordinate positions of a self-dual binary code C then G is one of M11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{M}}_{11}$$\end{document} of degree 22;Aut(M12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Aut}}({\mathrm{M}}_{12})$$\end{document} of degree 24; PSL(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(2,q)$$\end{document} of degree 2(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(q +1)$$\end{document} for q≡1(mod4);\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q {\equiv 1}{({\mathrm{mod}}\,4)};$$\end{document}PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document} odd and q an odd prime; PSL(m,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(m, q)$$\end{document} of degree 2×qm-1q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times \frac{q^m-1}{q-1}$$\end{document} for m≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 4$$\end{document} even and q an odd prime, and PSL(3,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PSL}(3,2)$$\end{document} of degree 14. When combined with a result on the classification of binary self-dual codes invariant under primitive rank 3 permutation groups of almost simple type this yields a result on the non-existence of extremal binary self-dual codes invariant under quasiprimitive rank 3 permutation groups of almost simple type.
引用
收藏
页码:113 / 134
页数:21
相关论文
共 50 条
  • [31] CLASSIFICATION OF SELF-DUAL CODES OF LENGTH 36
    Harada, Masaaki
    Munemasa, Akihiro
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (02) : 229 - 235
  • [32] On the Classification of Self-dual ZZk-Codes
    Harada, Masaaki
    Munemasa, Akihiro
    CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2009, 5921 : 78 - +
  • [33] Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes
    Dougherty, Steven T.
    Gildea, Joseph
    Korban, Adrian
    Kaya, Abidin
    Tylyshchak, Alexander
    Yildiz, Bahattin
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 108 - 127
  • [34] New extremal binary self-dual codes of length 66 as extensions of self-dual codes over Rk
    Karadeniz, Suat
    Yildiz, Bahattin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (08): : 1963 - 1973
  • [35] On the Classification of Self-Dual Codes over 𝔽5
    Masaaki Harada
    Patric R. J. Östergård
    Graphs and Combinatorics, 2003, 19 : 203 - 214
  • [36] Permutation groups and binary self-orthogonal codes
    Chigira, Naoki
    Harada, Masaaki
    Kitazume, Masaaki
    JOURNAL OF ALGEBRA, 2007, 309 (02) : 610 - 621
  • [37] Classification of the binary self-dual [42,21,8] codes having an automorphism of order 3
    Bouyuklieva, Stefka
    Yankov, Nikolay
    Russeva, Radka
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 605 - 615
  • [38] NEW EXTREMAL BINARY SELF-DUAL CODES OF LENGTH 68 FROM R2-LIFTS OF BINARY SELF-DUAL CODES
    Karadeniz, Suat
    Yildiz, Bahattin
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (02) : 219 - 229
  • [39] Binary self-dual codes with automorphisms of order 23
    Yorgova, Radinka
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (02) : 155 - 164
  • [40] Binary self-dual codes with automorphisms of composite order
    Dontcheva, RA
    van Zanten, AJ
    Dodunekov, SA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (02) : 311 - 318