There are Plane Spanners of Degree 4 and Moderate Stretch Factor

被引:0
|
作者
Nicolas Bonichon
Iyad Kanj
Ljubomir Perković
Ge Xia
机构
[1] University of Bordeaux,School of Computing
[2] LaBRI,Department of Computer Science
[3] UMR 5800,undefined
[4] CNRS,undefined
[5] LaBRI,undefined
[6] UMR 5800,undefined
[7] DePaul University,undefined
[8] Lafayette College,undefined
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Plane spanner; Bounded degree; Delaunay triangulation; Stretch factor;
D O I
暂无
中图分类号
学科分类号
摘要
Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a spanning subgraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} is said to be a t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-spanner, or simply a spanner, if for any pair of nodes u,v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v$$\end{document} in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} the distance between u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is at most t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} times their distance in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}. The constant t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} is referred to as the stretch factor. A spanner is plane if its edges do not cross. This paper considers the question: “What is the smallest maximum degree that can always be achieved for a plane spanner of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}?” Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper, we show that the complete Euclidean graph always contains a plane spanner of maximum degree 4 and make a big step toward closing the question. The stretch factor of the spanner is bounded by 156.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$156.82$$\end{document}. Our construction leads to an efficient algorithm for obtaining the spanner from Chew’s L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-Delaunay triangulation.
引用
收藏
页码:514 / 546
页数:32
相关论文
共 50 条
  • [41] SMALL STRETCH PAIRWISE SPANNERS AND APPROXIMATE D-PRESERVERS
    Kavitha, Telikepalli
    Varma, Nithin M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2239 - 2254
  • [42] Small stretch spanners in the streaming model: New algorithms and experiments
    Ausiello, Giorgio
    Demetrescu, Camil
    Franciosa, Paolo G.
    Italiano, Giuseppe F.
    Ribichini, Andrea
    ALGORITHMS - ESA 2007, PROCEEDINGS, 2007, 4698 : 605 - +
  • [43] On plane geometric spanners: A survey and open problems
    Bose, Prosenjit
    Smid, Michiel
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (07): : 818 - 830
  • [44] Constrained generalized Delaunay graphs are plane spanners
    Bose, Prosenjit
    De Carufel, Jean-Lou
    van Renssen, Andre
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 74 : 50 - 65
  • [45] Constrained Generalized Delaunay Graphs are Plane Spanners
    Bose, Prosenjit
    De Carufel, Jean-Lou
    van Renssen, Andre
    COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS, CIIS 2016, 2017, 532 : 281 - 293
  • [46] Plane Hop Spanners for Unit Disk Graphs
    Biniaz, Ahmad
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 140 - 154
  • [47] DEGREE-CONSTRAINED NETWORK SPANNERS WITH NONCONSTANT DELAY
    LIESTMAN, AL
    SHERMER, TC
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (02) : 291 - 321
  • [48] Bounded-degree spanners in the presence of polygonal obstacle
    van Renssen, Andre
    Wong, Gladys
    THEORETICAL COMPUTER SCIENCE, 2021, 854 : 159 - 173
  • [49] Generating low-degree 2-spanners
    Kortsarz, G
    Peleg, D
    SIAM JOURNAL ON COMPUTING, 1998, 27 (05) : 1438 - 1456
  • [50] DELAUNAY AND DIAMOND TRIANGULATIONS CONTAIN SPANNERS OF BOUNDED DEGREE
    Bose, Prosenjit
    Smid, Michiel
    Xu, Daming
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (02) : 119 - 140