There are Plane Spanners of Degree 4 and Moderate Stretch Factor

被引:0
|
作者
Nicolas Bonichon
Iyad Kanj
Ljubomir Perković
Ge Xia
机构
[1] University of Bordeaux,School of Computing
[2] LaBRI,Department of Computer Science
[3] UMR 5800,undefined
[4] CNRS,undefined
[5] LaBRI,undefined
[6] UMR 5800,undefined
[7] DePaul University,undefined
[8] Lafayette College,undefined
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Plane spanner; Bounded degree; Delaunay triangulation; Stretch factor;
D O I
暂无
中图分类号
学科分类号
摘要
Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a spanning subgraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} is said to be a t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-spanner, or simply a spanner, if for any pair of nodes u,v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v$$\end{document} in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} the distance between u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is at most t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} times their distance in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}. The constant t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} is referred to as the stretch factor. A spanner is plane if its edges do not cross. This paper considers the question: “What is the smallest maximum degree that can always be achieved for a plane spanner of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}?” Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper, we show that the complete Euclidean graph always contains a plane spanner of maximum degree 4 and make a big step toward closing the question. The stretch factor of the spanner is bounded by 156.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$156.82$$\end{document}. Our construction leads to an efficient algorithm for obtaining the spanner from Chew’s L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-Delaunay triangulation.
引用
收藏
页码:514 / 546
页数:32
相关论文
共 50 条
  • [31] DEGREE-CONSTRAINED PYRAMID SPANNERS
    RICHARDS, D
    LIESTMAN, AL
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1995, 25 (01) : 1 - 6
  • [32] Optimal Vertex Fault Tolerant Spanners (for fixed stretch)
    Bodwin, Greg
    Dinitz, Michael
    Parter, Merav
    Williams, Virginia Vassilevska
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1884 - 1900
  • [33] Lower Bounds on the Dilation of Plane Spanners
    Dumitrescu, Adrian
    Ghosh, Anirban
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 139 - 151
  • [34] BALANCING DEGREE, DIAMETER, AND WEIGHT IN EUCLIDEAN SPANNERS
    Solomon, Shay
    Elkin, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1173 - 1198
  • [35] Balancing Degree, Diameter and Weight in Euclidean Spanners
    Solomon, Shay
    Elkin, Michael
    ALGORITHMS-ESA 2010, 2010, 6346 : 48 - 59
  • [36] Diamond triangulations contain spanners of bounded degree
    Bose, Prosenjit
    Smid, Michiel
    Xu, Daming
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 173 - +
  • [37] Bypassing Erdos' Girth Conjecture: Hybrid Stretch and Sourcewise Spanners
    Parter, Merav
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT II, 2014, 8573 : 608 - 619
  • [38] Cone-based spanners of constant degree
    Damian, Mirela
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 48 - 61
  • [39] Deterministic distributed construction of linear stretch spanners in polylogarithmic time
    Derbel, Bilel
    Gavoille, Cyril
    Peleg, David
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2007, 4731 : 179 - +
  • [40] Degree-constrained spanners for multidimensional grids
    Liestman, AL
    Shermer, TC
    Stolte, CR
    DISCRETE APPLIED MATHEMATICS, 1996, 68 (1-2) : 119 - 144