There are Plane Spanners of Degree 4 and Moderate Stretch Factor

被引:0
|
作者
Nicolas Bonichon
Iyad Kanj
Ljubomir Perković
Ge Xia
机构
[1] University of Bordeaux,School of Computing
[2] LaBRI,Department of Computer Science
[3] UMR 5800,undefined
[4] CNRS,undefined
[5] LaBRI,undefined
[6] UMR 5800,undefined
[7] DePaul University,undefined
[8] Lafayette College,undefined
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Plane spanner; Bounded degree; Delaunay triangulation; Stretch factor;
D O I
暂无
中图分类号
学科分类号
摘要
Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a spanning subgraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} is said to be a t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-spanner, or simply a spanner, if for any pair of nodes u,v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v$$\end{document} in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} the distance between u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is at most t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} times their distance in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}. The constant t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} is referred to as the stretch factor. A spanner is plane if its edges do not cross. This paper considers the question: “What is the smallest maximum degree that can always be achieved for a plane spanner of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}?” Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper, we show that the complete Euclidean graph always contains a plane spanner of maximum degree 4 and make a big step toward closing the question. The stretch factor of the spanner is bounded by 156.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$156.82$$\end{document}. Our construction leads to an efficient algorithm for obtaining the spanner from Chew’s L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-Delaunay triangulation.
引用
收藏
页码:514 / 546
页数:32
相关论文
共 50 条
  • [21] Lattice spanners of low degree
    Dumitrescu, Adrian
    Ghosh, Anirban
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [22] Lattice Spanners of Low Degree
    Dumitrescu, Adrian
    Ghosh, Anirban
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 152 - 163
  • [23] SPANNERS IN GRAPHS OF BOUNDED DEGREE
    CAI, LZ
    KEIL, M
    NETWORKS, 1994, 24 (04) : 233 - 249
  • [24] Max-stretch reduction for tree spanners
    Iwama, K
    Lingas, A
    Okita, M
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2005, 3608 : 122 - 133
  • [25] Max-stretch reduction for tree spanners
    Iwama, Kazuo
    Lingas, Andrzej
    Okita, Masaki
    ALGORITHMICA, 2008, 50 (02) : 223 - 235
  • [26] Max-Stretch Reduction for Tree Spanners
    Kazuo Iwama
    Andrzej Lingas
    Masaki Okita
    Algorithmica, 2008, 50 : 223 - 235
  • [27] Out-of-plane shear of fiber composites at moderate stretch levels
    G. Shmuel
    G. deBotton
    Journal of Engineering Mathematics, 2010, 68 : 85 - 97
  • [28] Out-of-plane shear of fiber composites at moderate stretch levels
    Shmuel, G.
    deBotton, G.
    JOURNAL OF ENGINEERING MATHEMATICS, 2010, 68 (01) : 85 - 97
  • [29] Degree-Constrained Pyramid Spanners
    Richards, D.
    Liestman, A. L.
    Papier, 499
  • [30] Tree spanners of bounded degree graphs
    Papoutsakis, Ioannis
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 395 - 407