There are Plane Spanners of Degree 4 and Moderate Stretch Factor

被引:0
|
作者
Nicolas Bonichon
Iyad Kanj
Ljubomir Perković
Ge Xia
机构
[1] University of Bordeaux,School of Computing
[2] LaBRI,Department of Computer Science
[3] UMR 5800,undefined
[4] CNRS,undefined
[5] LaBRI,undefined
[6] UMR 5800,undefined
[7] DePaul University,undefined
[8] Lafayette College,undefined
来源
关键词
Plane spanner; Bounded degree; Delaunay triangulation; Stretch factor;
D O I
暂无
中图分类号
学科分类号
摘要
Let E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a spanning subgraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} is said to be a t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-spanner, or simply a spanner, if for any pair of nodes u,v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v$$\end{document} in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document} the distance between u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is at most t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} times their distance in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}. The constant t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} is referred to as the stretch factor. A spanner is plane if its edges do not cross. This paper considers the question: “What is the smallest maximum degree that can always be achieved for a plane spanner of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{E}}$$\end{document}?” Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper, we show that the complete Euclidean graph always contains a plane spanner of maximum degree 4 and make a big step toward closing the question. The stretch factor of the spanner is bounded by 156.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$156.82$$\end{document}. Our construction leads to an efficient algorithm for obtaining the spanner from Chew’s L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-Delaunay triangulation.
引用
收藏
页码:514 / 546
页数:32
相关论文
共 50 条
  • [1] There are Plane Spanners of Degree 4 and Moderate Stretch Factor
    Bonichon, Nicolas
    Kanj, Iyad
    Perkovic, Ljubomir
    Xia, Ge
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (03) : 514 - 546
  • [2] Plane Spanners of Maximum Degree Six
    Bonichon, Nicolas
    Gavoille, Cyril
    Hanusse, Nicolas
    Perkovic, Ljubomir
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2010, 6198 : 19 - +
  • [3] On Plane Constrained Bounded-Degree Spanners
    Bose, Prosenjit
    Fagerberg, Rolf
    van Renssen, Andre
    Verdonschot, Sander
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 85 - 96
  • [4] On bounded degree plane strong geometric spanners
    Bose, Prosenjit
    Carmi, Paz
    Chaitman-Yerushalmi, Lilach
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 15 : 16 - 31
  • [5] On Plane Constrained Bounded-Degree Spanners
    Prosenjit Bose
    Rolf Fagerberg
    André van Renssen
    Sander Verdonschot
    Algorithmica, 2019, 81 : 1392 - 1415
  • [6] On Plane Constrained Bounded-Degree Spanners
    Bose, Prosenjit
    Fagerberg, Rolf
    van Renssen, Andre
    Verdonschot, Sander
    ALGORITHMICA, 2019, 81 (04) : 1392 - 1415
  • [7] Demand-Aware Plane Spanners of Bounded Degree
    Ceylan, Esra
    Foerster, Klaus-Tycho
    Schmid, Stefan
    Zaitsava, Katsiaryna
    2021 IFIP NETWORKING CONFERENCE AND WORKSHOPS (IFIP NETWORKING), 2021,
  • [8] Improved Spanning Ratio for Low Degree Plane Spanners
    Bose, Prosenjit
    Hill, Darryl
    Smid, Michiel
    ALGORITHMICA, 2018, 80 (03) : 935 - 976
  • [9] Constructing plane spanners of bounded degree and low weight
    Bose, P
    Gudmundsson, J
    Smid, M
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 234 - 246
  • [10] Constructing plane spanners of bounded degree and low weight
    Bose, P
    Gudmundsson, J
    Smid, M
    ALGORITHMICA, 2005, 42 (3-4) : 249 - 264