K3 Elliptic Genus and an Umbral Moonshine Module

被引:0
|
作者
Vassilis Anagiannis
Miranda C. N. Cheng
Sarah M. Harrison
机构
[1] University of Amsterdam,Institute of Physics
[2] University of Amsterdam,Korteweg
[3] Harvard University,de Vries Institute for Mathematics
[4] McGill University,Center for the Fundamental Laws of Nature
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Umbral moonshine connects the symmetry groups of the 23 Niemeier lattices with 23 sets of distinguished mock modular forms. The 23 cases of umbral moonshine have a uniform relation to symmetries of K3 string theories. Moreover, a supersymmetric vertex operator algebra with Conway sporadic symmetry also enjoys a close relation to the K3 elliptic genus. Inspired by the above two relations between moonshine and K3 string theory, we construct a chiral CFT by orbifolding the free theory of 24 chiral fermions and two pairs of fermionic and bosonic ghosts. In this paper we mainly focus on the case of umbral moonshine corresponding to the Niemeier lattice with root system given by 6 copies of D4 root system. This CFT then leads to the construction of an infinite-dimensional graded module for the umbral group GD4⊕6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G^{D_4^{\oplus 6}}}$$\end{document} whose graded characters coincide with the umbral moonshine functions. We also comment on how one can recover all umbral moonshine functions corresponding to the Niemeier root systems A5⊕4D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_5^{\oplus 4}D_4}$$\end{document}, A7⊕2D5⊕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_7^{\oplus 2}D_5^{\oplus 2}}$$\end{document}, A11D7E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{11}D_7 E_6}$$\end{document}, A17E7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{17}E_7}$$\end{document}, and D10E7⊕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{10}E_7^{\oplus 2}}$$\end{document}.
引用
收藏
页码:647 / 680
页数:33
相关论文
共 50 条
  • [1] K3 Elliptic Genus and an Umbral Moonshine Module
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 647 - 680
  • [2] Mathieu Moonshine in the elliptic genus of K3
    Gaberdiel, Matthias R.
    Hohenegger, Stefan
    Volpato, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [3] Mathieu Moonshine in the elliptic genus of K3
    Matthias R. Gaberdiel
    Stefan Hohenegger
    Roberto Volpato
    [J]. Journal of High Energy Physics, 2010
  • [4] Umbral Moonshine and K3 Surfaces
    Miranda C. N. Cheng
    Sarah Harrison
    [J]. Communications in Mathematical Physics, 2015, 339 : 221 - 261
  • [5] Umbral Moonshine and K3 Surfaces
    Cheng, Miranda C. N.
    Harrison, Sarah
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 221 - 261
  • [6] The Conway Moonshine Module is a reflected K3 theory
    Taormina, Anne
    Wendland, Katrin
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (05) : 1247 - 1323
  • [7] Twisted Elliptic Genus for K3 and Borcherds Product
    Tohru Eguchi
    Kazuhiro Hikami
    [J]. Letters in Mathematical Physics, 2012, 102 : 203 - 222
  • [8] Twisted Elliptic Genus for K3 and Borcherds Product
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 102 (02) : 203 - 222
  • [9] Note on twisted elliptic genus of K3 surface
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. PHYSICS LETTERS B, 2011, 694 (4-5) : 446 - 455
  • [10] Elliptic genera and the moonshine module
    Kultze, R
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1996, 223 (03) : 463 - 471