Umbral Moonshine and K3 Surfaces

被引:0
|
作者
Miranda C. N. Cheng
Sarah Harrison
机构
[1] University of Amsterdam,Institute of Physics and Korteweg
[2] Stanford University,de Vries Institute for Mathematics
来源
关键词
Conjugacy Class; Modular Form; Sigma Model; Elliptic Genus; Jacobi Form;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral moonshine into a geometric and physical context. This is achieved by relating the ADE root systems of the Niemeier lattices to the ADE du Val singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A geometric interpretation of our results is given in terms of the marking of K3 surfaces by Niemeier lattices.
引用
收藏
页码:221 / 261
页数:40
相关论文
共 50 条
  • [1] Umbral Moonshine and K3 Surfaces
    Cheng, Miranda C. N.
    Harrison, Sarah
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 221 - 261
  • [2] K3 Elliptic Genus and an Umbral Moonshine Module
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 647 - 680
  • [3] K3 Elliptic Genus and an Umbral Moonshine Module
    Vassilis Anagiannis
    Miranda C. N. Cheng
    Sarah M. Harrison
    [J]. Communications in Mathematical Physics, 2019, 366 : 647 - 680
  • [4] Mathieu moonshine and the geometry of K3 surfaces
    Creutzig, Thomas
    Hoehn, Gerald
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2014, 8 (02) : 295 - 328
  • [5] K3 string theory, lattices and moonshine
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    Volpato, Roberto
    Zimet, Max
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5
  • [6] K3 string theory, lattices and moonshine
    Miranda C. N. Cheng
    Sarah M. Harrison
    Roberto Volpato
    Max Zimet
    [J]. Research in the Mathematical Sciences, 2018, 5
  • [7] Mathieu Moonshine in the elliptic genus of K3
    Gaberdiel, Matthias R.
    Hohenegger, Stefan
    Volpato, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [8] Mathieu Moonshine in the elliptic genus of K3
    Matthias R. Gaberdiel
    Stefan Hohenegger
    Roberto Volpato
    [J]. Journal of High Energy Physics, 2010
  • [9] Umbral moonshine
    Cheng, Miranda C. N.
    Duncan, John F. R.
    Harvey, Jeffrey A.
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2014, 8 (02) : 101 - 242
  • [10] Mathieu moonshine and symmetries of K3 sigma models
    Hohenegger, Stefan
    [J]. STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, : 315 - 328