Mathieu moonshine and the geometry of K3 surfaces

被引:14
|
作者
Creutzig, Thomas [1 ]
Hoehn, Gerald [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Kansas State Univ, Manhattan, KS 66506 USA
关键词
ELLIPTIC GENERA;
D O I
10.4310/CNTP.2014.v8.n2.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the moonshine observation of Eguchi, Ooguri and Tachikawa relating the Mathieu group M-24 and the complex elliptic genus of a K3 surface with the symmetries of geometric structures on K3 surfaces. Two main results are that the complex elliptic genus of a K3 surface is a virtual module for the Mathieu group M-24 and also for a certain vertex operator superalgebra V-G where G is the holonomy group.
引用
收藏
页码:295 / 328
页数:34
相关论文
共 50 条
  • [1] Mathieu Moonshine in the elliptic genus of K3
    Gaberdiel, Matthias R.
    Hohenegger, Stefan
    Volpato, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [2] Mathieu Moonshine in the elliptic genus of K3
    Matthias R. Gaberdiel
    Stefan Hohenegger
    Roberto Volpato
    [J]. Journal of High Energy Physics, 2010
  • [3] Mathieu moonshine and symmetries of K3 sigma models
    Hohenegger, Stefan
    [J]. STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, : 315 - 328
  • [4] Umbral Moonshine and K3 Surfaces
    Miranda C. N. Cheng
    Sarah Harrison
    [J]. Communications in Mathematical Physics, 2015, 339 : 221 - 261
  • [5] Umbral Moonshine and K3 Surfaces
    Cheng, Miranda C. N.
    Harrison, Sarah
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 221 - 261
  • [6] Mathieu Moonshine and symmetries of K3 s-models
    Volpato, Roberto
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (9-10): : 1112 - 1117
  • [7] Lifting 1/4-BPS States on K3 and Mathieu Moonshine
    Keller, Christoph A.
    Zadeh, Ida G.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) : 225 - 257
  • [8] Datagraphs in algebraic geometry and K3 surfaces
    Brown, G
    [J]. SYMBOLIC AND NUMERICAL SCIENTIFIC COMPUTATION, 2003, 2630 : 210 - 224
  • [9] K3 string theory, lattices and moonshine
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    Volpato, Roberto
    Zimet, Max
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5
  • [10] K3 string theory, lattices and moonshine
    Miranda C. N. Cheng
    Sarah M. Harrison
    Roberto Volpato
    Max Zimet
    [J]. Research in the Mathematical Sciences, 2018, 5