Twisted Elliptic Genus for K3 and Borcherds Product

被引:0
|
作者
Tohru Eguchi
Kazuhiro Hikami
机构
[1] Kyoto University,Yukawa Institute for Theoretical Physics
[2] California Institute of Technology,Faculty of Mathematics
[3] Kyushu University,undefined
来源
关键词
58J26; 81T40; 20C34; 14J28; elliptic genus; superconformal algebra; moonshine; Mathieu group; Jacobi form; mock theta function;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the relation between the elliptic genus of K3 surface and the Mathieu group M24. We find that some of the twisted elliptic genera for K3 surface, defined for conjugacy classes of the Mathieu group M24, can be represented in a very simple manner in terms of the η product of the corresponding conjugacy classes. It is shown that our formula is a consequence of the identity between the Borcherds product and additive lift of some Siegel modular forms.
引用
收藏
页码:203 / 222
页数:19
相关论文
共 50 条
  • [1] Twisted Elliptic Genus for K3 and Borcherds Product
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 102 (02) : 203 - 222
  • [2] Note on twisted elliptic genus of K3 surface
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. PHYSICS LETTERS B, 2011, 694 (4-5) : 446 - 455
  • [3] Mathieu Moonshine in the elliptic genus of K3
    Gaberdiel, Matthias R.
    Hohenegger, Stefan
    Volpato, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [4] Mathieu Moonshine in the elliptic genus of K3
    Matthias R. Gaberdiel
    Stefan Hohenegger
    Roberto Volpato
    [J]. Journal of High Energy Physics, 2010
  • [5] K3 Elliptic Genus and an Umbral Moonshine Module
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 647 - 680
  • [6] K3 Elliptic Genus and an Umbral Moonshine Module
    Vassilis Anagiannis
    Miranda C. N. Cheng
    Sarah M. Harrison
    [J]. Communications in Mathematical Physics, 2019, 366 : 647 - 680
  • [7] Twisted tensor products of K3 with K3
    Arce, Jack
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3614 - 3634
  • [8] On elliptic K3 surfaces
    Shimada, I
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [9] Equivalences of twisted K3 surfaces
    Daniel Huybrechts
    Paolo Stellari
    [J]. Mathematische Annalen, 2005, 332 : 901 - 936
  • [10] Autoequivalences of twisted K3 surfaces
    Reinecke, Emanuel
    [J]. COMPOSITIO MATHEMATICA, 2019, 155 (05) : 912 - 937