Note on twisted elliptic genus of K3 surface

被引:91
|
作者
Eguchi, Tohru [1 ]
Hikami, Kazuhiro [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Naruto Univ Educ, Dept Math, Tokushima 7728502, Japan
关键词
Superconformal algebra; Elliptic genus; K3; surface; Mathieu group; SUPERCONFORMAL ALGEBRAS; FINITE-GROUPS; AUTOMORPHISMS;
D O I
10.1016/j.physletb.2010.10.017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of Mathieu group M-24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M-24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M-24. in this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 50 条
  • [1] Twisted Elliptic Genus for K3 and Borcherds Product
    Tohru Eguchi
    Kazuhiro Hikami
    [J]. Letters in Mathematical Physics, 2012, 102 : 203 - 222
  • [2] Twisted Elliptic Genus for K3 and Borcherds Product
    Eguchi, Tohru
    Hikami, Kazuhiro
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 102 (02) : 203 - 222
  • [3] A note on elliptic K3 surfaces
    Keum, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) : 2077 - 2086
  • [4] Mathieu Moonshine in the elliptic genus of K3
    Gaberdiel, Matthias R.
    Hohenegger, Stefan
    Volpato, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [5] Mathieu Moonshine in the elliptic genus of K3
    Matthias R. Gaberdiel
    Stefan Hohenegger
    Roberto Volpato
    [J]. Journal of High Energy Physics, 2010
  • [6] K3 Elliptic Genus and an Umbral Moonshine Module
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 647 - 680
  • [7] K3 Elliptic Genus and an Umbral Moonshine Module
    Vassilis Anagiannis
    Miranda C. N. Cheng
    Sarah M. Harrison
    [J]. Communications in Mathematical Physics, 2019, 366 : 647 - 680
  • [8] Elliptic fibrations of a K3 surface.
    Harrache, Titem
    Lecacheux, Odile
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 183 - 207
  • [9] Twisted tensor products of K3 with K3
    Arce, Jack
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3614 - 3634
  • [10] Classifications of Elliptic Fibrations of a Singular K3 Surface
    Bertin, Marie Jose
    Garbagnati, Alice
    Hortsch, Ruthi
    Lecacheux, Odile
    Mase, Makiko
    Salgado, Cecilia
    Whitcher, Ursula
    [J]. WOMEN IN NUMBERS EUROPE: RESEARCH DIRECTIONS IN NUMBER THEORY, 2015, 2 : 17 - 49