Note on twisted elliptic genus of K3 surface

被引:91
|
作者
Eguchi, Tohru [1 ]
Hikami, Kazuhiro [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Naruto Univ Educ, Dept Math, Tokushima 7728502, Japan
关键词
Superconformal algebra; Elliptic genus; K3; surface; Mathieu group; SUPERCONFORMAL ALGEBRAS; FINITE-GROUPS; AUTOMORPHISMS;
D O I
10.1016/j.physletb.2010.10.017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of Mathieu group M-24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M-24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M-24. in this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 50 条
  • [31] On the rank of the fibers of elliptic K3 surfaces
    Salgado, Cecilia
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (01): : 7 - 16
  • [32] Rational curves on elliptic K3 surfaces
    Tayou, Salim
    [J]. MATHEMATICAL RESEARCH LETTERS, 2020, 27 (04) : 1237 - 1247
  • [33] Stable pairs on elliptic K3 surfaces
    Bernardara, Marcello
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) : 565 - 569
  • [34] Compact moduli of elliptic K3 surfaces
    Ascher, Kenneth
    Bejleri, Dori
    [J]. GEOMETRY & TOPOLOGY, 2023, 27 (05) : 1891 - 1946
  • [35] Enhanced gauge symmetries on elliptic K3
    Bonora, L
    Reina, C
    Zampa, A
    [J]. PHYSICS LETTERS B, 1999, 452 (3-4) : 244 - 250
  • [36] Nodal elliptic curves on K3 surfaces
    Nathan Chen
    François Greer
    Ruijie Yang
    [J]. Mathematische Annalen, 2023, 386 : 2349 - 2370
  • [37] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    [J]. MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [38] On the rank of the fibers of elliptic K3 surfaces
    Cecilia Salgado
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 7 - 16
  • [39] Counting elliptic curves in K3 surfaces
    Lee, Junho
    Leung, Naichung Conan
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (04) : 591 - 601
  • [40] Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces
    Shimada, I
    Zhang, DQ
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2001, 161 : 23 - 54