Nodal elliptic curves on K3 surfaces

被引:0
|
作者
Nathan Chen
François Greer
Ruijie Yang
机构
[1] Stony Brook University,Department of Mathematics
[2] Stony Brook University,Simons Center for Geometry and Physics and Department of Mathematics
来源
Mathematische Annalen | 2023年 / 386卷
关键词
14D23; 14H10; 14J28; 14N15;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, L) be a general primitively polarized K3 surface with c1(L)2=2g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1(L)^2 = 2g-2$$\end{document} for some integer g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 2$$\end{document}. The Severi variety VL,δ⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^{L,\delta } \subset |L|$$\end{document} is defined to be the locus of reduced and irreducible curves in |L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L|$$\end{document} with exactly δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} nodes and no other singularities. When δ=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =g$$\end{document}, any curve C∈VL,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \in V^{L,g}$$\end{document} is a rational curve; in fact, Chen (Math Ann 324:71–104, 2002) has shown that all rational curves in |L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L|$$\end{document} are nodal, and the number of such rational curves is given by the Yau-Zaslow formula [20]. In this paper, we consider the next case where δ=g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = g-1$$\end{document} and the Severi variety VL,g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^{L,g-1}$$\end{document} parametrizing nodal elliptic curves is of dimension 1. Let V¯L,g-1⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{V}^{L,g-1} \subset |L|$$\end{document} denote the Zariski closure. For a reduced curve C, we define the geometric genus of C to be the sum of the genera of the irreducible components of the normalization. We prove that the geometric genus of the closure V¯L,g-1⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{V}^{L,g-1} \subset |L|$$\end{document} is bounded from below by O(eCg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(e^{C\sqrt{g}})$$\end{document}.
引用
收藏
页码:2349 / 2370
页数:21
相关论文
共 50 条
  • [1] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [2] Nodal curves on K3 surfaces
    Chen, Xi
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 168 - 173
  • [3] Moduli of nodal curves on K3 surfaces
    Ciliberto, Ciro
    Flamini, Flaminio
    Galati, Concettina
    Knutsen, Andreas Leopold
    ADVANCES IN MATHEMATICS, 2017, 309 : 624 - 654
  • [4] Rational curves on elliptic K3 surfaces
    Tayou, Salim
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (04) : 1237 - 1247
  • [5] Counting elliptic curves in K3 surfaces
    Lee, Junho
    Leung, Naichung Conan
    JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (04) : 591 - 601
  • [6] Modular properties of nodal curves on K3 surfaces
    Mihai Halic
    Mathematische Zeitschrift, 2012, 270 : 871 - 887
  • [7] Nodal Curves with General Moduli on K3 Surfaces
    Flamini, Flaminio
    Knutsen, Andreas Leopold
    Pacienza, Gianluca
    Sernesi, Edoardo
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 3955 - 3971
  • [8] Modular properties of nodal curves on K3 surfaces
    Halic, Mihai
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) : 871 - 887
  • [9] Singular rational curves on elliptic K3 surfaces
    Baltes, Jonas
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 2701 - 2714
  • [10] Degeneration of differentials and moduli of nodal curves on K3 surfaces
    Ciliberto, C.
    Flamini, F.
    Galati, C.
    Knutsen, A. L.
    LOCAL AND GLOBAL METHODS IN ALGEBRAIC GEOMETRY, 2018, 712 : 59 - 79