Nodal elliptic curves on K3 surfaces

被引:0
|
作者
Nathan Chen
François Greer
Ruijie Yang
机构
[1] Stony Brook University,Department of Mathematics
[2] Stony Brook University,Simons Center for Geometry and Physics and Department of Mathematics
来源
Mathematische Annalen | 2023年 / 386卷
关键词
14D23; 14H10; 14J28; 14N15;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, L) be a general primitively polarized K3 surface with c1(L)2=2g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1(L)^2 = 2g-2$$\end{document} for some integer g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 2$$\end{document}. The Severi variety VL,δ⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^{L,\delta } \subset |L|$$\end{document} is defined to be the locus of reduced and irreducible curves in |L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L|$$\end{document} with exactly δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} nodes and no other singularities. When δ=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =g$$\end{document}, any curve C∈VL,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \in V^{L,g}$$\end{document} is a rational curve; in fact, Chen (Math Ann 324:71–104, 2002) has shown that all rational curves in |L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L|$$\end{document} are nodal, and the number of such rational curves is given by the Yau-Zaslow formula [20]. In this paper, we consider the next case where δ=g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = g-1$$\end{document} and the Severi variety VL,g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^{L,g-1}$$\end{document} parametrizing nodal elliptic curves is of dimension 1. Let V¯L,g-1⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{V}^{L,g-1} \subset |L|$$\end{document} denote the Zariski closure. For a reduced curve C, we define the geometric genus of C to be the sum of the genera of the irreducible components of the normalization. We prove that the geometric genus of the closure V¯L,g-1⊂|L|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{V}^{L,g-1} \subset |L|$$\end{document} is bounded from below by O(eCg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(e^{C\sqrt{g}})$$\end{document}.
引用
收藏
页码:2349 / 2370
页数:21
相关论文
共 50 条
  • [21] L-equivalence for degree five elliptic curves, elliptic fibrations and K3 surfaces
    Shinder, Evgeny
    Zhang, Ziyu
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (02) : 395 - 409
  • [22] On L-functions of modular elliptic curves and certain K3 surfaces
    Malik Amir
    Letong Hong
    The Ramanujan Journal, 2022, 57 : 1001 - 1019
  • [23] Rational curves on K3 surfaces
    Jun Li
    Christian Liedtke
    Inventiones mathematicae, 2012, 188 : 713 - 727
  • [24] CONSTRUCTION OF CURVES ON THE K3 SURFACES
    Benoist, Olivier
    ASTERISQUE, 2015, (367) : 219 - 253
  • [25] On curves on K3 surfaces, II
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2018, 110 (01) : 35 - 43
  • [26] Rational curves on K3 surfaces
    Chen, X
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (02) : 245 - 278
  • [27] Rational curves on K3 surfaces
    Li, Jun
    Liedtke, Christian
    INVENTIONES MATHEMATICAE, 2012, 188 (03) : 713 - 727
  • [28] On curves on K3 surfaces: III
    Gerriet Martens
    Archiv der Mathematik, 2020, 115 : 401 - 412
  • [29] On curves on K3 surfaces, II
    Gerriet Martens
    Archiv der Mathematik, 2018, 110 : 35 - 43
  • [30] Curves and cycles on K3 surfaces
    Huybrechts, D.
    ALGEBRAIC GEOMETRY, 2014, 1 (01): : 69 - 106