Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Haruko Okamura
Tomoki Yamashita
机构
[1] Kinki University,Department of Mathematics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Cycle; Cyclability; Bipartite graph; Degree sum;
D O I
暂无
中图分类号
学科分类号
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let dG(v) be the degree of a vertex v in a graph G. For G[X, Y] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G),}$$\end{document} we define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$$\end{document} . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} such that σ1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|S \cap X| > |Y|}$$\end{document} and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:8
相关论文
共 50 条
  • [41] On the sum of the squares of all distances in bipartite graphs
    Zhao, Hongjin
    Geng, Xianya
    ARS COMBINATORIA, 2018, 136 : 45 - 55
  • [42] Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions
    Liu, Bin
    Liu, Guizhen
    GRAPHS AND COMBINATORICS, 2010, 26 (06) : 781 - 791
  • [43] Degree Sum Conditions for Traceable Quasi-Claw-Free Graphs
    Shuaijun CHEN
    Xiaodong CHEN
    Mingchu LI
    Journal of Mathematical Research with Applications, 2022, 42 (02) : 129 - 132
  • [44] Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions
    Bin Liu
    Guizhen Liu
    Graphs and Combinatorics, 2010, 26 : 781 - 791
  • [45] Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
    Li, Fengwei
    Ye, Qingfang
    Li, Xueliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (03) : 423 - 434
  • [46] On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs
    Das, Kinkar Chandra
    Mojallal, Seyed Ahmad
    Sun, Shaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 : 175 - 194
  • [47] Local degree condition for hamiltonian bipartite graphs
    Lou, Dingjun
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 1995, 34 (02):
  • [48] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [49] An implicit degree condition for cyclability of 2-heavy graphs
    Huang, Xing
    ARS COMBINATORIA, 2019, 146 : 135 - 141
  • [50] SIGNED DEGREE SEQUENCES IN SIGNED BIPARTITE GRAPHS
    Pirzada, S.
    Naikoo, T. A.
    Dar, F. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 301 - 312