Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Haruko Okamura
Tomoki Yamashita
机构
[1] Kinki University,Department of Mathematics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Cycle; Cyclability; Bipartite graph; Degree sum;
D O I
暂无
中图分类号
学科分类号
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let dG(v) be the degree of a vertex v in a graph G. For G[X, Y] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G),}$$\end{document} we define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$$\end{document} . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} such that σ1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|S \cap X| > |Y|}$$\end{document} and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:8
相关论文
共 50 条
  • [21] Degree sum conditions on two disjoint cycles in graphs
    Yan, Jin
    Zhang, Shaohua
    Ren, Yanyan
    Cai, Junqing
    INFORMATION PROCESSING LETTERS, 2018, 138 : 7 - 11
  • [22] Degree Conditions for Completely Independent Spanning Trees of Bipartite Graphs
    Jun Yuan
    Ru Zhang
    Aixia Liu
    Graphs and Combinatorics, 2022, 38
  • [23] Degree sum condition on distance 2 vertices for hamiltonian cycles in balanced bipartite graphs
    Wang, Ruixia
    Zhou, Zhiyi
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [24] Minimum color sum of bipartite graphs
    Bar-Noy, A
    Kortsarz, G
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1998, 28 (02): : 339 - 365
  • [25] The minimum color sum of bipartite graphs
    Bar-Noy, A
    Kortsarz, G
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 738 - 748
  • [26] On the sum of all distances in bipartite graphs
    Li, Shuchao
    Song, Yibing
    DISCRETE APPLIED MATHEMATICS, 2014, 169 : 176 - 185
  • [27] The sum of squares of degrees of bipartite graphs
    Neubauer, M. G.
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) : 1 - 11
  • [28] The sum of squares of degrees of bipartite graphs
    M. G. Neubauer
    Acta Mathematica Hungarica, 2023, 171 : 1 - 11
  • [29] Minimum Color Sum of Bipartite Graphs
    Bar-Noy, Amotz
    Kortsarz, Guy
    Journal of Algorithms, 1998, 28 (02) : 339 - 365
  • [30] Supereulerian graphs, independent sets, and degree-sum conditions
    Chen, ZH
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 73 - 87