Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Haruko Okamura
Tomoki Yamashita
机构
[1] Kinki University,Department of Mathematics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Cycle; Cyclability; Bipartite graph; Degree sum;
D O I
暂无
中图分类号
学科分类号
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let dG(v) be the degree of a vertex v in a graph G. For G[X, Y] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G),}$$\end{document} we define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$$\end{document} . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} such that σ1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|S \cap X| > |Y|}$$\end{document} and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:8
相关论文
共 50 条
  • [31] Degree sum conditions for the circumference of 4-connected graphs
    Chiba, Shuya
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2014, 333 : 66 - 83
  • [32] Degree sum conditions for path-factor uniform graphs
    Dai, Guowei
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1409 - 1415
  • [33] Degree Sum Conditions for Hamiltonicity on k-Partite Graphs
    Guantao Chen
    Michael S. Jacobson
    Graphs and Combinatorics, 1997, 13 : 325 - 343
  • [34] The sum number and integral sum number of complete bipartite graphs
    Wang, Y
    Liu, BL
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 69 - 82
  • [35] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Zhang, Sheng-gui
    Zhou, Chun-cao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 801 - 806
  • [36] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Shenggui ZHANG
    Chuncao ZHOU
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (03) : 801 - 806
  • [37] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Zhou, Bo
    Ilic, Aleksandar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1161 - 1169
  • [38] Bipartite graphs with the maximum sum of squares of degrees
    Sheng-gui Zhang
    Chun-cao Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 801 - 806
  • [39] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169
  • [40] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Sheng-gui ZHANG
    Chun-cao ZHOU
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 801 - 806