Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Haruko Okamura
Tomoki Yamashita
机构
[1] Kinki University,Department of Mathematics
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Cycle; Cyclability; Bipartite graph; Degree sum;
D O I
暂无
中图分类号
学科分类号
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let dG(v) be the degree of a vertex v in a graph G. For G[X, Y] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G),}$$\end{document} we define \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$$\end{document} . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq V(G)}$$\end{document} such that σ1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|S \cap X| > |Y|}$$\end{document} and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:8
相关论文
共 50 条
  • [1] Degree Sum Conditions for Cyclability in Bipartite Graphs
    Okamura, Haruko
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1077 - 1085
  • [2] CYCLABILITY IN BIPARTITE GRAPHS
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    OPUSCULA MATHEMATICA, 2009, 29 (04) : 345 - 364
  • [3] Spanning bipartite graphs with high degree sum in graphs
    Chen, Guantao
    Chiba, Shuya
    Gould, Ronald J.
    Gu, Xiaofeng
    Saito, Akira
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [4] Panconnectivity in Bipartite Graphs with Large Degree sum
    Masao Tsugaki
    Tomoki Yamashita
    Takamasa Yashima
    Graphs and Combinatorics, 2023, 39
  • [5] Sum coloring of bipartite graphs with bounded degree
    Malafiejski, M
    Giaro, K
    Janczewski, R
    Kubale, M
    ALGORITHMICA, 2004, 40 (04) : 235 - 244
  • [6] Sum Coloring of Bipartite Graphs with Bounded Degree
    Michal Malafiejski
    Krzysztof Giaro
    Robert Janczewski
    Marek Kubale
    Algorithmica , 2004, 40 : 235 - 244
  • [7] Panconnectivity in Bipartite Graphs with Large Degree sum
    Tsugaki, Masao
    Yamashita, Tomoki
    Yashima, Takamasa
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [8] Cyclability and pancyclability in bipartite graphs
    Abderrezzak, ME
    Flandrin, E
    Amar, D
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 3 - 11
  • [9] Degree sum conditions for path-factors with specified end vertices in bipartite graphs
    Matsubara, Ryota
    Matsumura, Hajime
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2017, 340 (02) : 87 - 95
  • [10] Spanning Bipartite Graphs with Large Degree Sum in Graphs of Odd Order
    Shuya Chiba
    Akira Saito
    Masao Tsugaki
    Tomoki Yamashita
    Graphs and Combinatorics, 2021, 37 : 1841 - 1858