T-dependent Dyson-Schwinger equation in IR regime of QCD: the critical point

被引:0
|
作者
A. N. Mitra
W-Y. P. Hwang
机构
[1] National Taiwan University,Center for Academic Excellence on Cosmology & Particle Astrophysics
关键词
Elementary Particle; Differential Operator; Quark Mass; Particle Acceleration; Mass Function;
D O I
暂无
中图分类号
学科分类号
摘要
The quark mass function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} in QCD is revisited, using a gluon propagator in the form 1/(k2 + mg2) plus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\mu^2/ (k^2 + m_g^2)^2$\end{document}, where the second (IR) term gives linear confinement for mg = 0 in the instantaneous limit, μ being another scale. To find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} we propose a new (differential) form of the Dyson-Schwinger equation (DSE) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document}, based on an infinitesimal subtractive renormalization via a differential operator which lowers the degree of divergence in integration on the RHS, by two units. This warrants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p-k)\approx \Sigma(p)$\end{document} in the integrand since its k-dependence is no longer sensitive to the principal term (p-k)2 in the quark propagator. The simplified DSE (which incorporates the Ward-Takahashi (WT) identity in the Landau gauge) is satisfied for large p2 by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(0)/(1 + \beta p^2)$\end{document}, except for Log factors. The limit p2 = 0 determines \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0$\end{document}. A third limit, p2 = -m02, defines the dynamical mass m0 via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma({\mathrm {i}} m_0) = + m_0$\end{document}. After two checks (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi} = 93\pm 1$\end{document} MeV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(280 \pm 5 {\mathrm {MeV}})^3$\end{document}), for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 < \beta < 2$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0 = 300 $\end{document} MeV, the T-dependent DSE is used in the real time formalism to determine the “critical” index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma = 1/3$\end{document} analytically, with the IR term partly serving as the H-field. We find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}} = 180 \pm 20 $\end{document} MeV and check the vanishing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} at Tc.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [41] Time-independent stochastic quantization, Dyson-Schwinger equations, and infrared critical exponents in QCD
    Zwanziger, D
    PHYSICAL REVIEW D, 2003, 67 (10)
  • [42] Dense two-color QCD from Dyson-Schwinger equations
    Contant, Romain
    Huber, Markus Q.
    PHYSICAL REVIEW D, 2020, 101 (01)
  • [43] QCD phase transitions via a refined truncation of Dyson-Schwinger equations
    Gao, Fei
    Liu, Yu-xin
    PHYSICAL REVIEW D, 2016, 94 (07)
  • [44] QCD at finite temperature and chemical potential from Dyson-Schwinger equations
    Fischer, Christian S.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2019, 105 : 1 - 60
  • [45] Practical scheme from QCD to phenomena via Dyson-Schwinger equations
    Tang, Can
    Gao, Fei
    Liu, Yu-xin
    PHYSICAL REVIEW D, 2019, 100 (05)
  • [46] THE STUDY OF QCD PHASE TRANSITION AT FINITE TEMPERATURE AND CHIRAL CHEMICAL POTENTIAL IN A DYSON-SCHWINGER EQUATION MODEL
    Luo, Liu-Jun
    Shi, Song
    Zong, Hong-Shi
    MODERN PHYSICS LETTERS A, 2013, 28 (23)
  • [47] 2+1 flavors QCD equation of state at zero temperature within Dyson-Schwinger equations
    Xu, Shu-Sheng
    Yan, Yan
    Cui, Zhu-Fang
    Zong, Hong-Shi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (36):
  • [48] Dynamical running mass of quark in the Dyson-Schwinger equation approach
    Ma, WX
    Shen, PN
    Zhou, LJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (05) : 571 - 576
  • [49] Ghost spectral function from the spectral Dyson-Schwinger equation
    Horak, Jan
    Papavassiliou, Joannis
    Pawlowski, Jan M.
    Wink, Nicolas
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [50] DYSON-SCHWINGER EQUATION FOR A SYSTEM OF 2 PARTICLES IN QUANTUM ELECTRODYNAMICS
    KARIMKHODZHAEV, A
    FAUSTOV, RN
    THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 32 (01) : 585 - 591