T-dependent Dyson-Schwinger equation in IR regime of QCD: the critical point

被引:0
|
作者
A. N. Mitra
W-Y. P. Hwang
机构
[1] National Taiwan University,Center for Academic Excellence on Cosmology & Particle Astrophysics
关键词
Elementary Particle; Differential Operator; Quark Mass; Particle Acceleration; Mass Function;
D O I
暂无
中图分类号
学科分类号
摘要
The quark mass function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} in QCD is revisited, using a gluon propagator in the form 1/(k2 + mg2) plus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\mu^2/ (k^2 + m_g^2)^2$\end{document}, where the second (IR) term gives linear confinement for mg = 0 in the instantaneous limit, μ being another scale. To find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} we propose a new (differential) form of the Dyson-Schwinger equation (DSE) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document}, based on an infinitesimal subtractive renormalization via a differential operator which lowers the degree of divergence in integration on the RHS, by two units. This warrants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p-k)\approx \Sigma(p)$\end{document} in the integrand since its k-dependence is no longer sensitive to the principal term (p-k)2 in the quark propagator. The simplified DSE (which incorporates the Ward-Takahashi (WT) identity in the Landau gauge) is satisfied for large p2 by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(0)/(1 + \beta p^2)$\end{document}, except for Log factors. The limit p2 = 0 determines \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0$\end{document}. A third limit, p2 = -m02, defines the dynamical mass m0 via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma({\mathrm {i}} m_0) = + m_0$\end{document}. After two checks (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi} = 93\pm 1$\end{document} MeV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(280 \pm 5 {\mathrm {MeV}})^3$\end{document}), for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 < \beta < 2$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0 = 300 $\end{document} MeV, the T-dependent DSE is used in the real time formalism to determine the “critical” index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma = 1/3$\end{document} analytically, with the IR term partly serving as the H-field. We find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}} = 180 \pm 20 $\end{document} MeV and check the vanishing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} at Tc.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [31] Dyson-Schwinger equations: Density, temperature and continuum strong QCD
    Roberts, CD
    Schmidt, SM
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 45 SUPPL 1, 2000, 45 : S1 - S103
  • [32] T(r)opical Dyson-Schwinger Equations
    Chang, Lei
    Cloet, Ian C.
    Roberts, Craig D.
    Roberts, Hannes L. L.
    T(R)OPICAL QCD 2010, 2011, 1354
  • [33] Susceptibilities of QCD Vacuum from Renormalized Dyson-Schwinger Equations
    CHEN Wei~1 QI Shi~1 SUN Wei-Min~1 ZONG Hong-Shi~(1
    CommunicationsinTheoreticalPhysics, 2004, 41 (06) : 917 - 920
  • [34] Solving a coupled set of truncated QCD Dyson-Schwinger equations
    Hauck, A
    von Smekal, L
    Alkofer, R
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 112 (2-3) : 166 - 182
  • [35] The QCD β-function from global solutions to Dyson-Schwinger equations
    van Baalen, Guillaume
    Kreimer, Dirk
    Uminsky, David
    Yeats, Karen
    ANNALS OF PHYSICS, 2010, 325 (02) : 300 - 324
  • [36] Dyson-Schwinger equations: Density, temperature and continuum strong QCD
    Roberts, C.D.
    Schmidt, S.M.
    Progress in Particle and Nuclear Physics, 2000, 45 (SUPPL. 1)
  • [37] A perspective on Dyson-Schwinger equation: toy model of Pion
    Chang, Lei
    21ST INTERNATIONAL CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS, 2016, 113
  • [38] DETERMINATION OF THE SINGULARITIES OF THE DYSON-SCHWINGER EQUATION FOR THE QUARK PROPAGATOR
    MARIS, P
    HOLTIES, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (21): : 5369 - 5386
  • [39] Solving the gluon Dyson-Schwinger equation in the Mandelstam approximation
    Hauck, A
    von Smekal, L
    Alkofer, R
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 112 (2-3) : 149 - 165
  • [40] QCD phase transition and equation of state of stellar strong interaction matter via Dyson-Schwinger equation approach
    Bai, Zhan
    Liu, Yu-xin
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07):