T-dependent Dyson-Schwinger equation in IR regime of QCD: the critical point

被引:0
|
作者
A. N. Mitra
W-Y. P. Hwang
机构
[1] National Taiwan University,Center for Academic Excellence on Cosmology & Particle Astrophysics
关键词
Elementary Particle; Differential Operator; Quark Mass; Particle Acceleration; Mass Function;
D O I
暂无
中图分类号
学科分类号
摘要
The quark mass function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} in QCD is revisited, using a gluon propagator in the form 1/(k2 + mg2) plus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\mu^2/ (k^2 + m_g^2)^2$\end{document}, where the second (IR) term gives linear confinement for mg = 0 in the instantaneous limit, μ being another scale. To find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} we propose a new (differential) form of the Dyson-Schwinger equation (DSE) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document}, based on an infinitesimal subtractive renormalization via a differential operator which lowers the degree of divergence in integration on the RHS, by two units. This warrants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p-k)\approx \Sigma(p)$\end{document} in the integrand since its k-dependence is no longer sensitive to the principal term (p-k)2 in the quark propagator. The simplified DSE (which incorporates the Ward-Takahashi (WT) identity in the Landau gauge) is satisfied for large p2 by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(0)/(1 + \beta p^2)$\end{document}, except for Log factors. The limit p2 = 0 determines \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0$\end{document}. A third limit, p2 = -m02, defines the dynamical mass m0 via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma({\mathrm {i}} m_0) = + m_0$\end{document}. After two checks (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi} = 93\pm 1$\end{document} MeV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(280 \pm 5 {\mathrm {MeV}})^3$\end{document}), for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 < \beta < 2$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0 = 300 $\end{document} MeV, the T-dependent DSE is used in the real time formalism to determine the “critical” index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma = 1/3$\end{document} analytically, with the IR term partly serving as the H-field. We find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}} = 180 \pm 20 $\end{document} MeV and check the vanishing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} at Tc.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [21] Scalar Susceptibility of QCD from Dyson-Schwinger Approach
    WU Kong-Ping~1 SHI Yuan-Mei~2 SUN Wei-Min~(2
    Communications in Theoretical Physics, 2008, 49 (01) : 189 - 192
  • [22] QCD Phase Diagram Using Dyson-Schwinger Equations
    Liu, Yu-xin
    Qin, Si-xue
    Chang, Lei
    Roberts, Craig D.
    T(R)OPICAL QCD 2010, 2011, 1354
  • [23] Infrared properties of QCD from Dyson-Schwinger equations
    Fischer, Christian S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2006, 32 (08) : R253 - R291
  • [24] Scalar susceptibility of QCD from Dyson-Schwinger approach
    Wu Kong-Ping
    Shi Yuan-Mei
    Sun Wei-Min
    Ping Jia-Lun
    Zong Hong-Shi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (01) : 189 - 192
  • [25] Coulomb gauge ghost Dyson-Schwinger equation
    Watson, P.
    Reinhardt, H.
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [26] Chemical potential dependence of chiral quark condensate in Dyson-Schwinger equation approach of QCD
    Chang, Lei
    Chen, Huan
    Wang, Bin
    Yuan, Wei
    Liu, Yu-xin
    PHYSICS LETTERS B, 2007, 644 (5-6) : 315 - 321
  • [27] Structure of Thermal Quasi-Fermion in QED/QCD from the Dyson-Schwinger Equation
    Nakkagawa, Hisao
    STRONG COUPLING GAUGE THEORIES IN LHC ERA, 2011, : 437 - 437
  • [28] Evaluation of pion-nucleon sigma term in Dyson-Schwinger equation approach of QCD
    Huang, Jing-Hui
    Sun, Ting-Ting
    Chen, Huan
    PHYSICAL REVIEW D, 2020, 101 (05)
  • [29] QCD equation of state and thermodynamic observables from computationally minimal Dyson-Schwinger equations
    Lu, Yi
    Gao, Fei
    Liu, Yu-xin
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2024, 110 (01)
  • [30] Susceptibilities of QCD vacuum from renormalized Dyson-Schwinger equations
    Chen, W
    Qi, S
    Sun, WM
    Zong, HS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 917 - 920