T-dependent Dyson-Schwinger equation in IR regime of QCD: the critical point

被引:0
|
作者
A. N. Mitra
W-Y. P. Hwang
机构
[1] National Taiwan University,Center for Academic Excellence on Cosmology & Particle Astrophysics
关键词
Elementary Particle; Differential Operator; Quark Mass; Particle Acceleration; Mass Function;
D O I
暂无
中图分类号
学科分类号
摘要
The quark mass function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} in QCD is revisited, using a gluon propagator in the form 1/(k2 + mg2) plus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\mu^2/ (k^2 + m_g^2)^2$\end{document}, where the second (IR) term gives linear confinement for mg = 0 in the instantaneous limit, μ being another scale. To find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} we propose a new (differential) form of the Dyson-Schwinger equation (DSE) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document}, based on an infinitesimal subtractive renormalization via a differential operator which lowers the degree of divergence in integration on the RHS, by two units. This warrants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p-k)\approx \Sigma(p)$\end{document} in the integrand since its k-dependence is no longer sensitive to the principal term (p-k)2 in the quark propagator. The simplified DSE (which incorporates the Ward-Takahashi (WT) identity in the Landau gauge) is satisfied for large p2 by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(p)$\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma(0)/(1 + \beta p^2)$\end{document}, except for Log factors. The limit p2 = 0 determines \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0$\end{document}. A third limit, p2 = -m02, defines the dynamical mass m0 via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma({\mathrm {i}} m_0) = + m_0$\end{document}. After two checks (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi} = 93\pm 1$\end{document} MeV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(280 \pm 5 {\mathrm {MeV}})^3$\end{document}), for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 < \beta < 2$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma_0 = 300 $\end{document} MeV, the T-dependent DSE is used in the real time formalism to determine the “critical” index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma = 1/3$\end{document} analytically, with the IR term partly serving as the H-field. We find \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}} = 180 \pm 20 $\end{document} MeV and check the vanishing of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \langle q{\bar{q}}\rangle $\end{document} at Tc.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 50 条
  • [1] T-dependent Dyson-Schwinger equation in IR regime of QCD:: the critical point
    Mitra, AN
    Hwang, WYP
    EUROPEAN PHYSICAL JOURNAL C, 2005, 39 (02): : 209 - 218
  • [2] QCD phase transition in Dyson-Schwinger equation approach of QCD
    Chang, Lei
    Wang, Bin
    Yuan, Wei
    Chen, Huan
    Shag, Guo-Yun
    Liu, Yu-Xin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2007, 16 (7-8): : 2289 - 2294
  • [3] Collective Perspective on Advances in Dyson-Schwinger Equation QCD
    Bashir, Adnan
    Chang Lei
    Cloet, Ian C.
    El-Bennich, Bruno
    Liu Yu-Xin
    Roberts, Craig D.
    Tandy, Peter C.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (01) : 79 - 134
  • [4] QCD phase transitions using the QCD Dyson-Schwinger equation approach
    Gao F.
    Liu Y.
    He Jishu/Nuclear Techniques, 2023, 46 (04):
  • [5] Dyson-Schwinger equation and quantum phase transitions in massless QCD
    Yuan, Wei
    Chen, Huan
    Liu, Yu-xin
    PHYSICS LETTERS B, 2006, 637 (1-2) : 69 - 74
  • [6] QCD's equation of state from Dyson-Schwinger equations
    Isserstedt, Philipp
    Fischer, Christian S.
    Steinert, Thorsten
    FAIR NEXT GENERATION SCIENTISTS - 7TH EDITION WORKSHOP, 2023,
  • [7] Dyson-Schwinger Approach to Hamiltonian QCD
    Campagnari, Davide
    Reinhardt, Hugo
    Huber, Markus Q.
    Vastag, Peter
    Ebadati, Ehsan
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [8] Strong QCD and Dyson-Schwinger equations
    Roberts, Craig D.
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 355 - 458
  • [9] STABILITY OF VACUUM AND QCD PHASE TRANSITION IN DYSON-SCHWINGER EQUATION APPROACH OF QCD
    Liu, Yu-Xin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2008, 17 (09): : 1965 - 1978
  • [10] Revisiting the equation of state of hybrid stars in the Dyson-Schwinger equation approach to QCD
    Bai, Zhan
    Chen, Huan
    Liu, Yu-xin
    PHYSICAL REVIEW D, 2018, 97 (02)