Problem of determining the nonstationary potential in a hyperbolic-type equation

被引:0
|
作者
D. K. Durdiev
机构
[1] Bukhara State University,
来源
关键词
inverse problem; hyperbolic equation; stability; uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane x = 0. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
引用
收藏
页码:1154 / 1158
页数:4
相关论文
共 50 条
  • [41] NONLINEAR ZAREMBA-TYPE PROBLEM FOR A HYPERBOLIC EQUATION
    DUBINSKI.YA
    DOKLADY AKADEMII NAUK SSSR, 1971, 200 (03): : 519 - &
  • [42] ASYMPTOTICS OF SOLUTION OF PROBLEM WITH INITIAL JUMPS FOR A SYSTEM OF HYPERBOLIC-TYPE DIFFERENTIAL EQUATIONS WITH A SMALL PARAMETER AT DERIVATIVE
    KASYMOV, KA
    DOKLADY AKADEMII NAUK SSSR, 1971, 196 (02): : 274 - &
  • [43] Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4223 - 4243
  • [44] Zeros of Polynomials Generated by a Rational Function with a Hyperbolic-Type Denominator
    Forgacs, Tamas
    Tran, Khang
    CONSTRUCTIVE APPROXIMATION, 2017, 46 (03) : 617 - 643
  • [45] A LIGHT BEAM WAVEGUIDE USING HYPERBOLIC-TYPE GAS LENSES
    SUEMATSU, Y
    IGA, K
    ITO, S
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1966, MT14 (12) : 657 - +
  • [46] Zeros of Polynomials Generated by a Rational Function with a Hyperbolic-Type Denominator
    Tamás Forgács
    Khang Tran
    Constructive Approximation, 2017, 46 : 617 - 643
  • [47] On a problem of the Frankl type for an equation of the mixed parabolic-hyperbolic type
    Kal'menov, Tynysbek Sh.
    Sadybekov, Makhmud
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [48] THE LOCAL SOLVABILITY OF A PROBLEM OF DETERMINING THE SPATIAL PART OF A MULTIDIMENSIONAL KERNEL IN THE INTEGRO-DIFFERENTIAL EQUATION OF HYPERBOLIC TYPE
    Durdiev, D. K.
    Safarov, J. Sh.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (04): : 37 - 47
  • [49] Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups
    Aidyn Kassymov
    Niyaz Tokmagambetov
    Berikbol Torebek
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4223 - 4243
  • [50] Optical Properties of Cylindrical Quantum Dots with Hyperbolic-Type Axial Potential under Applied Electric Field
    Kasapoglu, Esin
    Yucel, Melike Behiye
    Sakiroglu, Serpil
    Sari, Huseyin
    Duque, Carlos A.
    NANOMATERIALS, 2022, 12 (19)