Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups

被引:1
|
作者
Aidyn Kassymov
Niyaz Tokmagambetov
Berikbol Torebek
机构
[1] Al-Farabi Kazakh National University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Ghent University,undefined
[3] Institute of Mathematics and Mathematical Modeling,undefined
[4] Peoples’ Friendship University of Russia,undefined
[5] RUDN University,undefined
关键词
Rockland operator; Graded Lie groups; Blow-up; Kato-type exponent; Pseudo-hyperbolic equation; 35R03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with systems of wave and pseudo-hyperbolic equations. Some semilinear equations for hypoelliptic operators on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, Heisenberg groups, stratified Lie groups and graded Lie groups are studied. In particular, we obtain nonexistence results for nonlinear hyperbolic and pseudo-hyperbolic equations and systems on graded Lie groups. Also, we show Kato-type exponents for systems of pseudo-hyperbolic equations for Rockland operators on graded Lie groups.
引用
收藏
页码:4223 / 4243
页数:20
相关论文
共 50 条
  • [1] Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4223 - 4243
  • [2] HYPERBOLIC-TYPE DIFFERENTIAL-EQUATIONS
    LARIONOV, EA
    DIFFERENTIAL EQUATIONS, 1992, 28 (01) : 88 - 93
  • [3] Software package for solving hyperbolic-type equations
    Fortova S.V.
    Kraginskii L.M.
    Chikitkin A.V.
    Oparina E.I.
    Mathematical Models and Computer Simulations, 2013, 5 (6) : 607 - 616
  • [4] LINEAR EVOLUTION EQUATIONS OF HYPERBOLIC-TYPE .2.
    KATO, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) : 648 - 666
  • [5] Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations
    Lyashko, S. I.
    Sydorov, M. V. S.
    Lyashko, N. I.
    Alexandrovich, I. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (05) : 753 - 758
  • [6] Nonexistence Results for Semilinear Equations in Carnot Groups
    Ferrari, Fausto
    Pinamonti, Andrea
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 : 130 - 146
  • [7] The hyperbolic-type point process
    Demni, Nizar
    Lazag, Pierre
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (04) : 1137 - 1152
  • [8] SINGULAR CAUCHY-PROBLEM FOR ONE SYSTEM OF HYPERBOLIC-TYPE EQUATIONS
    TERSENOV, SA
    DOKLADY AKADEMII NAUK SSSR, 1972, 205 (05): : 1046 - &
  • [9] GROUPS OF HYPERBOLIC LENGTH IN ODD CHARACTERISTIC GROUPS OF LIE TYPE
    BROZOVIC, DP
    JOURNAL OF ALGEBRA, 1994, 164 (01) : 210 - 243
  • [10] ASYMPTOTIC STABILITY OF INTERMITTENTLY DAMPED SEMI-LINEAR HYPERBOLIC-TYPE EQUATIONS
    Luo, Jun-Ren
    Xiao, Ti-Jun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (01) : 82 - 99