Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups

被引:1
|
作者
Aidyn Kassymov
Niyaz Tokmagambetov
Berikbol Torebek
机构
[1] Al-Farabi Kazakh National University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Ghent University,undefined
[3] Institute of Mathematics and Mathematical Modeling,undefined
[4] Peoples’ Friendship University of Russia,undefined
[5] RUDN University,undefined
关键词
Rockland operator; Graded Lie groups; Blow-up; Kato-type exponent; Pseudo-hyperbolic equation; 35R03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with systems of wave and pseudo-hyperbolic equations. Some semilinear equations for hypoelliptic operators on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, Heisenberg groups, stratified Lie groups and graded Lie groups are studied. In particular, we obtain nonexistence results for nonlinear hyperbolic and pseudo-hyperbolic equations and systems on graded Lie groups. Also, we show Kato-type exponents for systems of pseudo-hyperbolic equations for Rockland operators on graded Lie groups.
引用
收藏
页码:4223 / 4243
页数:20
相关论文
共 50 条
  • [21] CUBIC INTERPOLATED PSEUDO-PARTICLE METHOD (CIP) FOR SOLVING HYPERBOLIC-TYPE EQUATIONS
    TAKEWAKI, H
    NISHIGUCHI, A
    YABE, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 61 (02) : 261 - 268
  • [22] The nonrelativistic oscillator strength of a hyperbolic-type potential
    H.Hassanabadi
    S.Zarrinkamar
    B.H.Yazarloo
    Chinese Physics B, 2013, (06) : 109 - 113
  • [23] One-point hyperbolic-type metrics
    Borovikova, Marina
    Ibragimov, Zair
    Bravo, Miguel Jimenez
    Luna, Alexandro
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (01): : 117 - 136
  • [24] The nonrelativistic oscillator strength of a hyperbolic-type potential
    Hassanabadi, H.
    Zarrinkamar, S.
    Yazarloo, B. H.
    CHINESE PHYSICS B, 2013, 22 (06)
  • [25] A hyperbolic-type affine invariant curve flow
    Wo, Weifeng
    Ma, Feiyao
    Qu, Changzheng
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (02) : 219 - 245
  • [26] HYPERBOLIC-TYPE DIFFERENTIAL EQUATION IN BANACH SPACE
    KOLUPANO.GA
    DOKLADY AKADEMII NAUK SSSR, 1972, 207 (05): : 1044 - 1047
  • [27] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    Jubin, Benoit
    Kotov, Alexei
    Poncin, Norbert
    Salnikov, Vladimir
    TRANSFORMATION GROUPS, 2022, 27 (02) : 497 - 523
  • [28] DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS
    BENOIT JUBIN
    ALEXEI KOTOV
    NORBERT PONCIN
    VLADIMIR SALNIKOV
    Transformation Groups, 2022, 27 : 497 - 523
  • [29] Nonexistence of nontrivial solutions for supercritical equations of mixed elliptic-hyperbolic type
    Lupo, D
    Payne, KR
    Popivanov, NI
    CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 371 - +
  • [30] ALGEBRAIC GROUPS ASSOCIATED WITH GRADED LIE ALGEBRAS OF CARTAN TYPE
    SHEN GUANGYU * SHU BIN **
    ChineseAnnalsofMathematics, 1998, (03) : 46 - 51