DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS

被引:2
|
作者
Jubin, Benoit [1 ]
Kotov, Alexei [2 ]
Poncin, Norbert [3 ]
Salnikov, Vladimir [4 ,5 ]
机构
[1] Inst Math de Jussieu Paris Rive Gauche, 4 Pl Jussieu,BC 247, F-75252 Paris 5, France
[2] Univ Hradec Kralove, Fac Sci, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[3] Univ Luxembourg, Maison Nombre, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[4] LaSIE CNRS, Av Michel Crepeau, F-17042 La Rochelle 1, France
[5] La Rochelle Univ, Av Michel Crepeau, F-17042 La Rochelle 1, France
关键词
INTEGRATION; EXTENSIONS; CATEGORY;
D O I
10.1007/s00031-021-09666-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss the question of integrating differential graded Lie algebras (DGLA) to differential graded Lie groups (DGLG). We first recall the classical problem of integration in the context, and recollect the known results. Then, we define the category of differential graded Lie groups and study its properties. We show how to associate a differential graded Lie algebra to every differential graded Lie group and vice versa. For the DGLA -> DGLG direction, the main "tools" are graded Hopf algebras and Harish-Chandra pairs (HCP)-we define the category of graded and differential graded HCPs and explain how those are related to the desired construction. We describe some near-at-hand examples and mention possible generalizations.
引用
收藏
页码:497 / 523
页数:27
相关论文
共 50 条