Problem of determining the nonstationary potential in a hyperbolic-type equation

被引:0
|
作者
D. K. Durdiev
机构
[1] Bukhara State University,
来源
关键词
inverse problem; hyperbolic equation; stability; uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane x = 0. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
引用
收藏
页码:1154 / 1158
页数:4
相关论文
共 50 条
  • [21] The problem of determining two coefficients of a hyperbolic equation
    Romanov, VG
    Glushkova, DI
    DOKLADY MATHEMATICS, 2003, 67 (03) : 386 - 390
  • [22] HYPERBOLIC-TYPE DIFFERENTIAL-EQUATIONS
    LARIONOV, EA
    DIFFERENTIAL EQUATIONS, 1992, 28 (01) : 88 - 93
  • [23] Bound and Scattering States for a Hyperbolic-Type Potential in View of a New Developed Approximation
    Aydogdu, Oktay
    Yanar, Hilmi
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (08) : 529 - 534
  • [24] Software package for solving hyperbolic-type equations
    Fortova S.V.
    Kraginskii L.M.
    Chikitkin A.V.
    Oparina E.I.
    Mathematical Models and Computer Simulations, 2013, 5 (6) : 607 - 616
  • [25] Hyperbolic-type inequalities on generalized metric spaces
    Lungu, Nicolaie
    CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (03) : 341 - 347
  • [26] The dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential
    Martem’yanova N.V.
    Russian Mathematics, 2015, 59 (11) : 36 - 44
  • [27] One-point hyperbolic-type metrics
    Borovikova, Marina
    Ibragimov, Zair
    Bravo, Miguel Jimenez
    Luna, Alexandro
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (01): : 117 - 136
  • [28] A hyperbolic-type affine invariant curve flow
    Wo, Weifeng
    Ma, Feiyao
    Qu, Changzheng
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (02) : 219 - 245
  • [29] VARIATION OF PROBLEM OF OPTIMIZATION IN A HYPERBOLIC TYPE EQUATION
    PETUKHOV, LV
    TROITSKII, VA
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1972, 36 (04): : 578 - +
  • [30] Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis
    Hasto, Peter
    Ibragimov, Zair
    Minda, David
    Ponnusamy, Saminathan
    Sahoo, Swadesh
    IN THE TRADITION OF AHLFORS-BERS, IV, 2007, 432 : 63 - +