A catalogue of biochemically diverse CRISPR-Cas9 orthologs

被引:0
|
作者
Giedrius Gasiunas
Joshua K. Young
Tautvydas Karvelis
Darius Kazlauskas
Tomas Urbaitis
Monika Jasnauskaite
Mantvyda M. Grusyte
Sushmitha Paulraj
Po-Hao Wang
Zhenglin Hou
Shane K. Dooley
Mark Cigan
Clara Alarcon
N. Doane Chilcoat
Greta Bigelyte
Jennifer L. Curcuru
Megumu Mabuchi
Zhiyi Sun
Ryan T. Fuchs
Ezra Schildkraut
Peter R. Weigele
William E. Jack
G. Brett Robb
Česlovas Venclovas
Virginijus Siksnys
机构
[1] CasZyme,Department of Molecular Engineering
[2] Corteva Agriscience™,Institute of Biotechnology
[3] Vilnius University,Department of Agricultural and Biosystems Engineering
[4] Iowa State University,undefined
[5] New England Biolabs,undefined
[6] Inari Agriculture,undefined
[7] Genus plc,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.
引用
收藏
相关论文
共 50 条
  • [1] A catalogue of biochemically diverse CRISPR-Cas9 orthologs
    Gasiunas, Giedrius
    Young, Joshua K.
    Karvelis, Tautvydas
    Kazlauskas, Darius
    Urbaitis, Tomas
    Jasnauskaite, Monika
    Grusyte, Mantvyda M.
    Paulraj, Sushmitha
    Wang, Po-Hao
    Hou, Zhenglin
    Dooley, Shane K.
    Cigan, Mark
    Alarcon, Clara
    Chilcoat, N. Doane
    Bigelyte, Greta
    Curcuru, Jennifer L.
    Mabuchi, Megumu
    Sun, Zhiyi
    Fuchs, Ryan T.
    Schildkraut, Ezra
    Weigele, Peter R.
    Jack, William E.
    Robb, G. Brett
    Venclovas, Ceslovas
    Siksnys, Virginijus
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Novel CRISPR-Cas9 variants generated by diverse means
    Genetic Engineering and Biotechnology News, 2019, 39 (03):
  • [3] Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins
    Hwang, Sungwon
    Maxwell, Karen L.
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (07)
  • [4] The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit
    Bean, Bjorn D. M.
    Whiteway, Malcolm
    Martin, Vincent J. J.
    G3-GENES GENOMES GENETICS, 2022, 12 (08):
  • [5] Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins
    Zhu, Yalan
    Gao, Ang
    Zhan, Qi
    Wang, Yong
    Feng, Han
    Liu, Songqing
    Gao, Guangxia
    Serganov, Alexander
    Gao, Pu
    MOLECULAR CELL, 2019, 74 (02) : 296 - +
  • [6] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [7] CRISPR-Cas9: a world first?
    不详
    LANCET, 2018, 392 (10163): : 2413 - 2413
  • [8] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [9] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [10] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855