General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number

被引:0
|
作者
Tomáš Vetrík
Selvaraj Balachandran
机构
[1] University of the Free State,Department of Mathematics and Applied Mathematics
[2] SASTRA Deemed University,Department of Mathematics, School of Arts, Sciences and Humanities
来源
关键词
Tree; Unicyclic graph; Multiplicative Zagreb index; Matching;
D O I
暂无
中图分类号
学科分类号
摘要
The first general multiplicative Zagreb index of a graph G is defined as P1a(G)=∏v∈V(G)(degG(v))a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1^a (G) = \prod _{v \in V(G)} (deg_G (v))^a$$\end{document} and the second general multiplicative Zagreb index is P2a(G)=∏v∈V(G)(degG(v))adegG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2^a (G) = \prod _{v \in V(G)} (deg_G (v))^{a \, deg_G (v)}$$\end{document}, where V(G) is the vertex set of G, degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg_{G} (v)$$\end{document} is the degree of v in G and a≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne 0$$\end{document} is a real number. We present lower and upper bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs of given order with a perfect matching. We also obtain lower and upper bounds for trees and unicyclic graphs of given order and matching number. All the trees and unicyclic graphs which achieve the bounds are presented, thus our bounds are sharp. Bounds for the classical multiplicative Zagreb indices are special cases of our theorems and those bounds are new results as well.
引用
收藏
页码:953 / 973
页数:20
相关论文
共 50 条
  • [41] Zagreb eccentricity indices of unicyclic graphs
    Qi, Xuli
    Zhou, Bo
    Li, Jiyong
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 166 - 174
  • [42] Sharp Bounds on General Multiplicative Zagreb Indices of Trees
    Dehgardi, Nasrin
    Gutman, Ivan
    SSRN,
  • [43] Extremal multiplicative Zagreb indices among trees with given distance k-domination number
    Hayat, Fazal
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (05)
  • [44] Trees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index
    Xu, Kexiang
    Das, Kinkar Ch
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 257 - 272
  • [45] Extremal Zagreb indices of unicyclic graphs
    Chen, Shubo
    Zhou, Houqing
    ARS COMBINATORIA, 2010, 97 : 241 - 248
  • [46] Extremal Zagreb indices of unicyclic graphs
    Chen, Shubo
    Zhou, Houqing
    UTILITAS MATHEMATICA, 2019, 113 : 311 - 318
  • [47] On the Zagreb indices of graphs with given Roman domination number
    Jamri, Ayu Ameliatul Shahilah Ahmad
    Hasni, Roslan
    Husain, Sharifah Kartini Said
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 141 - 152
  • [48] On extremal Zagreb indices of trees with given domination number
    Borovicanin, Bojana
    Furtula, Boris
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 279 : 208 - 218
  • [49] Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs
    Jia-Bao Liu
    Chunxiang Wang
    Shaohui Wang
    Bing Wei
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 67 - 78
  • [50] Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs
    Liu, Jia-Bao
    Wang, Chunxiang
    Wang, Shaohui
    Wei, Bing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 67 - 78