General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number

被引:0
|
作者
Tomáš Vetrík
Selvaraj Balachandran
机构
[1] University of the Free State,Department of Mathematics and Applied Mathematics
[2] SASTRA Deemed University,Department of Mathematics, School of Arts, Sciences and Humanities
来源
关键词
Tree; Unicyclic graph; Multiplicative Zagreb index; Matching;
D O I
暂无
中图分类号
学科分类号
摘要
The first general multiplicative Zagreb index of a graph G is defined as P1a(G)=∏v∈V(G)(degG(v))a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1^a (G) = \prod _{v \in V(G)} (deg_G (v))^a$$\end{document} and the second general multiplicative Zagreb index is P2a(G)=∏v∈V(G)(degG(v))adegG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2^a (G) = \prod _{v \in V(G)} (deg_G (v))^{a \, deg_G (v)}$$\end{document}, where V(G) is the vertex set of G, degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg_{G} (v)$$\end{document} is the degree of v in G and a≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne 0$$\end{document} is a real number. We present lower and upper bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs of given order with a perfect matching. We also obtain lower and upper bounds for trees and unicyclic graphs of given order and matching number. All the trees and unicyclic graphs which achieve the bounds are presented, thus our bounds are sharp. Bounds for the classical multiplicative Zagreb indices are special cases of our theorems and those bounds are new results as well.
引用
收藏
页码:953 / 973
页数:20
相关论文
共 50 条
  • [21] The extremal Sombor index of trees and unicyclic graphs with given matching number
    Zhou, Ting
    Lin, Zhen
    Miao, Lianying
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (08): : 2205 - 2216
  • [22] A note on Zagreb indices inequality for trees and unicyclic graphs
    Andova, Vesna
    Cohen, Nathann
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (01) : 73 - 76
  • [23] On the Reformulated Multiplicative First Zagreb Index of Trees and Unicyclic Graphs
    Ali, Akbar
    Nadeem, Atif
    Raza, Zahid
    Mohammed, Wael W.
    Elsayed, Elsayed M.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [24] On extremal multiplicative Zagreb indices of trees with given number of vertices of maximum degree
    Wang, Shaohui
    Wang, Chunxiang
    Chen, Lin
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 166 - 173
  • [25] The second Zagreb indices of unicyclic graphs with given degree sequences
    Liu, Muhuo
    Liu, Bolian
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 217 - 221
  • [26] Minimum general sum-connectivity index of trees and unicyclic graphs having a given matching number
    Jamil, Muhammad Kamran
    Tomescu, Ioan
    DISCRETE APPLIED MATHEMATICS, 2017, 222 : 143 - 150
  • [27] General Multiplicative Zagreb Indices of Graphs With Bridges
    Alfuraidan, Monther Rashed
    Imran, Muhammad
    Jamil, Muhammad Kamran
    Vetrik, Tomas
    IEEE ACCESS, 2020, 8 : 118725 - 118731
  • [28] The Zagreb indices of graphs with a given clique number
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Appl Math Lett, 6 (1026-1030):
  • [29] The Zagreb indices of graphs with a given clique number
    Xu, Kexiang
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 1026 - 1030
  • [30] Maximizing and Minimizing Multiplicative Zagreb Indices of Graphs Subject to Given Number of Cut Edges
    Wang, Shaohui
    Wang, Chunxiang
    Chen, Lin
    Liu, Jia-Bao
    Shao, Zehui
    MATHEMATICS, 2018, 6 (11):