General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number

被引:0
|
作者
Tomáš Vetrík
Selvaraj Balachandran
机构
[1] University of the Free State,Department of Mathematics and Applied Mathematics
[2] SASTRA Deemed University,Department of Mathematics, School of Arts, Sciences and Humanities
来源
关键词
Tree; Unicyclic graph; Multiplicative Zagreb index; Matching;
D O I
暂无
中图分类号
学科分类号
摘要
The first general multiplicative Zagreb index of a graph G is defined as P1a(G)=∏v∈V(G)(degG(v))a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1^a (G) = \prod _{v \in V(G)} (deg_G (v))^a$$\end{document} and the second general multiplicative Zagreb index is P2a(G)=∏v∈V(G)(degG(v))adegG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2^a (G) = \prod _{v \in V(G)} (deg_G (v))^{a \, deg_G (v)}$$\end{document}, where V(G) is the vertex set of G, degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg_{G} (v)$$\end{document} is the degree of v in G and a≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne 0$$\end{document} is a real number. We present lower and upper bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs of given order with a perfect matching. We also obtain lower and upper bounds for trees and unicyclic graphs of given order and matching number. All the trees and unicyclic graphs which achieve the bounds are presented, thus our bounds are sharp. Bounds for the classical multiplicative Zagreb indices are special cases of our theorems and those bounds are new results as well.
引用
收藏
页码:953 / 973
页数:20
相关论文
共 50 条
  • [31] Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number
    Feng, Lihua
    Ilic, Aleksandar
    APPLIED MATHEMATICS LETTERS, 2010, 23 (08) : 943 - 948
  • [32] Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number
    Li, Shuchao
    Zhao, Qin
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 2869 - 2879
  • [33] Minimum harmonic indices of trees and unicyclic graphs with given number of pendant vertices and diameter
    Zhu, Yan
    Chang, Renying
    UTILITAS MATHEMATICA, 2014, 93 : 365 - 374
  • [34] The number of independent sets of unicyclic graphs with given matching number
    Chen, Gong
    Zhu, Zhongxun
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 108 - 115
  • [35] A unified approach to the extrernal zagreb indices for trees, unicyclic graphs and bicyclic graphs
    Deng, Hanyuan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 57 (03) : 597 - 616
  • [36] Degree Distance of Unicyclic Graphs with Given Matching Number
    Feng, Lihua
    Liu, Weijun
    Ilic, Aleksandar
    Yu, Guihai
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 449 - 462
  • [37] On the Degree Distance of Unicyclic Graphs with Given Matching Number
    Li, Shuchao
    Song, Yibing
    Zhang, Huihui
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2261 - 2274
  • [38] Degree Distance of Unicyclic Graphs with Given Matching Number
    Lihua Feng
    Weijun Liu
    Aleksandar Ilić
    Guihai Yu
    Graphs and Combinatorics, 2013, 29 : 449 - 462
  • [39] THE HARMONIC INDEX OF UNICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER
    Lv, Jian-Bo
    Li, Jianxi
    Shiu, Wai Chee
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01): : 173 - 183
  • [40] On the Degree Distance of Unicyclic Graphs with Given Matching Number
    Shuchao Li
    Yibing Song
    Huihui Zhang
    Graphs and Combinatorics, 2015, 31 : 2261 - 2274