Tree;
Unicyclic graph;
Multiplicative Zagreb index;
Matching;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The first general multiplicative Zagreb index of a graph G is defined as P1a(G)=∏v∈V(G)(degG(v))a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_1^a (G) = \prod _{v \in V(G)} (deg_G (v))^a$$\end{document} and the second general multiplicative Zagreb index is P2a(G)=∏v∈V(G)(degG(v))adegG(v)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_2^a (G) = \prod _{v \in V(G)} (deg_G (v))^{a \, deg_G (v)}$$\end{document}, where V(G) is the vertex set of G, degG(v)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$deg_{G} (v)$$\end{document} is the degree of v in G and a≠0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a \ne 0$$\end{document} is a real number. We present lower and upper bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs of given order with a perfect matching. We also obtain lower and upper bounds for trees and unicyclic graphs of given order and matching number. All the trees and unicyclic graphs which achieve the bounds are presented, thus our bounds are sharp. Bounds for the classical multiplicative Zagreb indices are special cases of our theorems and those bounds are new results as well.
机构:
Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
SASTRA Deemed Univ, Dept Math, Sch Arts Sci & Humanities, Thanjavur, IndiaUniv Free State, Dept Math & Appl Math, Bloemfontein, South Africa
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Alfuraidan, Monther R.
Balachandran, Selvaraj
论文数: 0引用数: 0
h-index: 0
机构:
Univ Free State, Dept Math & Appl Math, POB 339, ZA-9300 Bloemfontein, South Africa
SASTRA Deemed Univ, Dept Math, Sch Arts Sci & Humanities, Thanjavur, IndiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
机构:
Univ Free State, Dept Math & Appl Math, POB 339, ZA-9300 Bloemfontein, South Africa
SASTRA Deemed Univ, Dept Math, Sch Humanities & Sci, Thanjavur 613402, Tamil Nadu, IndiaUniv Free State, Dept Math & Appl Math, POB 339, ZA-9300 Bloemfontein, South Africa
机构:
Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
SASTRA Deemed Univ, Dept Math, Sch Arts Sci & Humanities, Thanjavur, IndiaUniv Free State, Dept Math & Appl Math, Bloemfontein, South Africa
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Du, Zhibin
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Luo, Wei
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Du, Zhibin
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Zhou, Bo
Trinajstic, Nenad
论文数: 0引用数: 0
h-index: 0
机构:
Rugjer Boskovic Inst, Zagreb 10002, CroatiaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China