General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number

被引:0
|
作者
Tomáš Vetrík
Selvaraj Balachandran
机构
[1] University of the Free State,Department of Mathematics and Applied Mathematics
[2] SASTRA Deemed University,Department of Mathematics, School of Arts, Sciences and Humanities
来源
关键词
Tree; Unicyclic graph; Multiplicative Zagreb index; Matching;
D O I
暂无
中图分类号
学科分类号
摘要
The first general multiplicative Zagreb index of a graph G is defined as P1a(G)=∏v∈V(G)(degG(v))a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1^a (G) = \prod _{v \in V(G)} (deg_G (v))^a$$\end{document} and the second general multiplicative Zagreb index is P2a(G)=∏v∈V(G)(degG(v))adegG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2^a (G) = \prod _{v \in V(G)} (deg_G (v))^{a \, deg_G (v)}$$\end{document}, where V(G) is the vertex set of G, degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg_{G} (v)$$\end{document} is the degree of v in G and a≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne 0$$\end{document} is a real number. We present lower and upper bounds on the general multiplicative Zagreb indices for trees and unicyclic graphs of given order with a perfect matching. We also obtain lower and upper bounds for trees and unicyclic graphs of given order and matching number. All the trees and unicyclic graphs which achieve the bounds are presented, thus our bounds are sharp. Bounds for the classical multiplicative Zagreb indices are special cases of our theorems and those bounds are new results as well.
引用
收藏
页码:953 / 973
页数:20
相关论文
共 50 条
  • [1] General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number
    Vetrik, Tomas
    Balachandran, Selvaraj
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 953 - 973
  • [2] General multiplicative Zagreb indices of unicyclic graphs
    Alfuraidan, Monther R.
    Balachandran, Selvaraj
    Vetrik, Tomas
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (01) : 1 - 11
  • [3] GENERAL MULTIPLICATIVE ZAGREB INDICES OF GRAPHS WITH GIVEN CLIQUE NUMBER
    Vetrik, Tomas
    Balachandran, Selvaraj
    OPUSCULA MATHEMATICA, 2019, 39 (03) : 433 - 446
  • [4] General multiplicative Zagreb indices of trees with given independence number
    Balachandran, Selvaraj
    Vetrik, Tomas
    QUAESTIONES MATHEMATICAE, 2021, 44 (05) : 659 - 668
  • [5] MINIMUM WIENER INDICES OF TREES AND UNICYCLIC GRAPHS OF GIVEN MATCHING NUMBER
    Du, Zhibin
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 101 - 112
  • [6] On the Irregularity of Trees and Unicyclic Graphs with Given Matching Number
    Luo, Wei
    Zhou, Bo
    UTILITAS MATHEMATICA, 2010, 83 : 141 - 147
  • [7] Zagreb Indices of Trees, Unicyclic and Bicyclic Graphs With Given (Total) Domination
    Mojdeh, Doost Ali
    Habibi, Mohammad
    Badakhshian, Leila
    Rao, Yongsheng
    IEEE ACCESS, 2019, 7 : 94143 - 94149
  • [8] Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number
    Zhibin Du
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 47 : 842 - 855
  • [9] Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) : 842 - 855
  • [10] On extremal multiplicative Zagreb indices of trees with given domination number
    Wang, Shaohui
    Wang, Chunxiang
    Liu, Jia-Bao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 338 - 350