Discrete Variational Optimal Control

被引:0
|
作者
Fernando Jiménez
Marin Kobilarov
David Martín de Diego
机构
[1] CSIC-UAM-UC3M-UCM,Instituto de Ciencias Matemáticas
[2] Johns Hopkins University,undefined
来源
关键词
Variational integrators; Optimal control; Lie group; Discontinuous control inputs; Nonholonomic systems; Reduced control system; 70Q05; 49J15; 37M15; 70H03; 37J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
引用
收藏
页码:393 / 426
页数:33
相关论文
共 50 条
  • [1] Discrete Variational Optimal Control
    Jimenez, Fernando
    Kobilarov, Marin
    Martin de Diego, David
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (03) : 393 - 426
  • [2] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268
  • [3] Discrete variational integrators and optimal control theory
    Manuel de León
    David Martín de Diego
    Aitor Santamaría-Merino
    [J]. Advances in Computational Mathematics, 2007, 26 : 251 - 268
  • [4] Variational analysis in nonsmooth optimization and discrete optimal control
    Mordukhovich, Boris S.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (04) : 840 - 856
  • [5] DISCRETE COMPLEMENTARY VARIATIONAL PRINCIPLE AND OPTIMAL CONTROL-SYSTEMS
    CHAN, WL
    LEININGER, GG
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (01) : 33 - 45
  • [6] A discrete variational integrator for optimal control problems on SO(3)
    Hussein, Islam I.
    Leok, Melvin
    Sanyal, Amit K.
    Bloch, Anthony M.
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 6638 - +
  • [7] Variational integrators in discrete time-dependent optimal control theory
    Antonio Fernández
    Pedro L. García
    Ana G. Sípols
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 173 - 189
  • [8] Variational integrators in discrete time-dependent optimal control theory
    Fernandez, Antonio
    Garcia, Pedro L.
    Sipols, Ana G.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 173 - 189
  • [9] A SECOND-ORDER VARIATIONAL METHOD FOR DISCRETE-TIME OPTIMAL CONTROL PROBLEMS
    KOIVO, AJ
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1968, 286 (04): : 321 - &
  • [10] Optimal Control of Complex Systems through Variational Inference with a Discrete Event Decision Process
    Yang, Fan
    Liu, Bo
    Dong, Wen
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 296 - 304