Discrete Variational Optimal Control

被引:0
|
作者
Fernando Jiménez
Marin Kobilarov
David Martín de Diego
机构
[1] CSIC-UAM-UC3M-UCM,Instituto de Ciencias Matemáticas
[2] Johns Hopkins University,undefined
来源
关键词
Variational integrators; Optimal control; Lie group; Discontinuous control inputs; Nonholonomic systems; Reduced control system; 70Q05; 49J15; 37M15; 70H03; 37J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
引用
收藏
页码:393 / 426
页数:33
相关论文
共 50 条
  • [31] On variational integrators for optimal control of mechanical control systems
    Colombo, Leonardo
    de Diego, David Martin
    Zuccalli, Marcela
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 161 - 171
  • [32] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [33] Discrete Mechanics Modelling and Real-time Optimal Control Method Based on Lie Group Variational Integrator
    Li, Jie
    Xiao, Xiangjiang
    Zhu, Huayong
    Shen, Lincheng
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 930 - 937
  • [34] On solution problem of optimal control by variational methods
    Khapaev, MM
    DOKLADY AKADEMII NAUK, 1999, 367 (02) : 173 - 174
  • [35] Symbolic computation of variational symmetries in optimal control
    Gouveia, Paulo D. F.
    Torres, Delfim F. M.
    Rocha, Eugenio A. M.
    CONTROL AND CYBERNETICS, 2006, 35 (04): : 831 - 849
  • [36] Solution of optimal control problems by a variational method
    Ternovskii V.V.
    Khapaev M.M.
    Moscow University Computational Mathematics and Cybernetics, 2010, 34 (2) : 97 - 99
  • [37] Optimal control of the obstacle in semilinear variational inequalities
    Bergounioux, M
    Lenhart, S
    POSITIVITY, 2004, 8 (03) : 229 - 242
  • [38] Optimal control of the obstacle for a parabolic variational inequality
    Adams, DR
    Lenhart, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (02) : 602 - 614
  • [39] OPTIMAL CONTROL PROBLEM FOR PARABOLIC VARIATIONAL INEQUALITIES
    汪更生
    ActaMathematicaScientia, 2001, (04) : 509 - 525
  • [40] Variational data assimilation and optimal control - Preface
    Neta, Beny
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) : XIII - XV