Stabilization and Control for the Biharmonic Schrödinger Equation

被引:0
|
作者
Roberto A. Capistrano–Filho
Márcio Cavalcante
机构
[1] Universidade Federal de Pernambuco (UFPE),Departamento de Matemática
[2] Universidade Federal de Alagoas (UFAL),Instituto de Matemática
来源
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrödinger; Propagation of compactness; Propagation of regularity; Stabilization; Primary 35Q55; Secondary 93B05; 93D15; 35A21;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrödinger system on a periodic domain T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} with internal control supported on an arbitrary sub-domain of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrödinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:41
相关论文
共 50 条