New classes of p-adic evolution equations and their applications

被引:0
|
作者
Anselmo Torresblanca-Badillo
Edwin A. Bolaño-Benitez
机构
[1] Universidad del Norte,Departamento de Matemáticas y Estadística
关键词
Nonlocal evolution equations; Heat kernel; Strong Markov processes; Feller semigroups; Transition functions; -adic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study new classes of evolution equations in the p-adic context. We establish rigorously that the fundamental solutions of the homogeneous Cauchy problem, naturally associated to these equations, are transition density functions of some strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} with state space the n-dimensional p-adic unit ball (Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}^{n}$$\end{document}). We introduce a family of operators {Tt}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T_{t}\}_{t\ge 0}$$\end{document} (obtained explicitly) that determine a Feller semigroup on C0(Zpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}({\mathbb {Z}}_{p}^{n})$$\end{document}. Also, we study the asymptotic behavior of the survival probability of a strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} on a ball B-mn⊂Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{-m}^{n}\subset {\mathbb {Z}}_{p}^{n}$$\end{document}, m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in {\mathbb {N}}$$\end{document}. Moreover, we study the inhomogeneous Cauchy problem and we will show that its mild solution is associated with the mentioned above Feller semigroup.
引用
收藏
相关论文
共 50 条
  • [1] New classes of p-adic evolution equations and their applications
    Torresblanca-Badillo, Anselmo
    Bolano-Benitez, Edwin A.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
  • [2] p-adic evolution pseudo-differential equations and p-adic wavelets
    Shelkovich, V. M.
    [J]. IZVESTIYA MATHEMATICS, 2011, 75 (06) : 1249 - 1278
  • [3] p-Adic differential equations and p-adic coefficients on curves
    Christol, G
    Mebkhout, Z
    [J]. ASTERISQUE, 2002, (279) : 125 - +
  • [4] Applications of the p-adic Nevanlinna theory to functional equations
    Boutabaa, A
    Escassut, A
    [J]. ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) : 751 - +
  • [5] New Applications of the p-Adic Nevanlinna Theory
    Escassut A.
    An T.T.H.
    [J]. p-Adic Numbers, Ultrametric Analysis and Applications, 2018, 10 (1) : 12 - 31
  • [6] p-adic differential equations
    Christol, G
    Mebkhout, Z
    [J]. ALGEBRA AND NUMBER THEORY, 2000, 208 : 105 - 116
  • [7] Cycle Classes for p-Adic Etale Tate twists and The Image of p-Adic Regulators
    Sato, Kanetomo
    [J]. DOCUMENTA MATHEMATICA, 2013, 18 : 177 - 247
  • [8] Some p-adic differential equations and p-adic interpolation of classical formulas
    Baldassarri, F
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3B (03): : 573 - 600
  • [9] New classes of p-adic pseudo-differential operators with negative definite symbols and their applications
    Torresblanca-Badillo, Anselmo
    Bolano-Benitez, Edwin A.
    Gutierrez-Garcia, Ismael
    Estala-Arias, Samuel
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
  • [10] P-adic interpolation and applications
    Khoai, HH
    Thu, LTH
    [J]. FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS, 2004, : 143 - 151