New classes of p-adic evolution equations and their applications

被引:0
|
作者
Anselmo Torresblanca-Badillo
Edwin A. Bolaño-Benitez
机构
[1] Universidad del Norte,Departamento de Matemáticas y Estadística
关键词
Nonlocal evolution equations; Heat kernel; Strong Markov processes; Feller semigroups; Transition functions; -adic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study new classes of evolution equations in the p-adic context. We establish rigorously that the fundamental solutions of the homogeneous Cauchy problem, naturally associated to these equations, are transition density functions of some strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} with state space the n-dimensional p-adic unit ball (Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}^{n}$$\end{document}). We introduce a family of operators {Tt}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T_{t}\}_{t\ge 0}$$\end{document} (obtained explicitly) that determine a Feller semigroup on C0(Zpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}({\mathbb {Z}}_{p}^{n})$$\end{document}. Also, we study the asymptotic behavior of the survival probability of a strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} on a ball B-mn⊂Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{-m}^{n}\subset {\mathbb {Z}}_{p}^{n}$$\end{document}, m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in {\mathbb {N}}$$\end{document}. Moreover, we study the inhomogeneous Cauchy problem and we will show that its mild solution is associated with the mentioned above Feller semigroup.
引用
收藏
相关论文
共 50 条
  • [11] p-Adic wavelets and their applications
    S. V. Kozyrev
    A. Yu. Khrennikov
    V. M. Shelkovich
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 157 - 196
  • [12] p-Adic wavelets and their applications
    Kozyrev, S. V.
    Khrennikov, A. Yu.
    Shelkovich, V. M.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 (01) : 157 - 196
  • [13] p-adic strings and their applications
    Freund, Peter G. O.
    P-ADIC MATHEMATICAL PHYSICS, 2006, 826 : 65 - 73
  • [14] A New Class of p-Adic Integral Operators and Applications
    Jin, Jianjun
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (04) : 390 - 400
  • [15] On log-growth of solutions of p-adic differential equations with p-adic exponents
    Nakagawa, Takahiro
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2022, 147 : 153 - 168
  • [16] PUSHFORWARDS OF p-ADIC DIFFERENTIAL EQUATIONS
    Bojkovic, Velibor
    Poineau, Jerome
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (03) : 923 - 955
  • [17] On p-adic annihilators of real ideal classes
    All, Timothy
    JOURNAL OF NUMBER THEORY, 2013, 133 (07) : 2324 - 2338
  • [18] Some p-adic differential equations
    de Gosson, M
    Dragovich, B
    Khrennikov, A
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 91 - 102
  • [19] p-adic deformation of algebraic cycle classes
    Spencer Bloch
    Hélène Esnault
    Moritz Kerz
    Inventiones mathematicae, 2014, 195 : 673 - 722
  • [20] p-adic deformation of algebraic cycle classes
    Bloch, Spencer
    Esnault, Helene
    Kerz, Moritz
    INVENTIONES MATHEMATICAE, 2014, 195 (03) : 673 - 722