New classes of p-adic evolution equations and their applications

被引:0
|
作者
Anselmo Torresblanca-Badillo
Edwin A. Bolaño-Benitez
机构
[1] Universidad del Norte,Departamento de Matemáticas y Estadística
关键词
Nonlocal evolution equations; Heat kernel; Strong Markov processes; Feller semigroups; Transition functions; -adic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study new classes of evolution equations in the p-adic context. We establish rigorously that the fundamental solutions of the homogeneous Cauchy problem, naturally associated to these equations, are transition density functions of some strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} with state space the n-dimensional p-adic unit ball (Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}^{n}$$\end{document}). We introduce a family of operators {Tt}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T_{t}\}_{t\ge 0}$$\end{document} (obtained explicitly) that determine a Feller semigroup on C0(Zpn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}({\mathbb {Z}}_{p}^{n})$$\end{document}. Also, we study the asymptotic behavior of the survival probability of a strong Markov processes X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {X}}$$\end{document} on a ball B-mn⊂Zpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{-m}^{n}\subset {\mathbb {Z}}_{p}^{n}$$\end{document}, m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in {\mathbb {N}}$$\end{document}. Moreover, we study the inhomogeneous Cauchy problem and we will show that its mild solution is associated with the mentioned above Feller semigroup.
引用
收藏
相关论文
共 50 条