New classes of p-adic pseudo-differential operators with negative definite symbols and their applications

被引:0
|
作者
Torresblanca-Badillo, Anselmo [1 ,2 ]
Bolano-Benitez, Edwin A. [2 ]
Gutierrez-Garcia, Ismael [2 ]
Estala-Arias, Samuel [3 ]
机构
[1] Univ Sucre, Fac Educ & Ciencias, Dept Matemat, Cra 28 5-267,Barrio Puerta Roja, Sincelejo, Sucre, Colombia
[2] Univ Norte, Dept Matemat & Estadist, Km 5 Via Puerto Colombia, Barranquilla, Colombia
[3] Univ Autonoma Queretaro, Fac Ingn, Cerro Campanas S-N, Santiago De Queretaro 76010, Qro, Mexico
关键词
Pseudo-differential operators; Heat kernel; Markov processes; Feller semigroups; Convolution semigroups; p-adic analysis; FELLER SEMIGROUPS;
D O I
10.1007/s11868-024-00616-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces new classes of p-adic operators representingm-dissipativepseudo-differential operators with negative definite symbols under certain conditions.We will study new types of semilinear problems and martingale problems associatedwith these operators, and we will prove that these pseudo-differential operators are the infinitesimal generators of strongly continuous contraction semigroups on L2(Qnp).Also, this article introduces new families of measures, resolvent of measures, positivedefinite measures, Feller semigroups, and Markov processes
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Some further classes of pseudo-differential operators in the p-adic context and their applications
    Torresblanca-Badillo, Anselmo
    Albarracin-Mantilla, Adriana. A. A.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
  • [2] Some further classes of pseudo-differential operators in the p-adic context and their applications
    Anselmo Torresblanca-Badillo
    Adriana A. Albarracín-Mantilla
    [J]. Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [3] Pseudo-differential operators with semi-quasielliptic symbols over p-adic fields
    Galeano-Penaloza, J.
    Zuniga-Galindo, W. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 32 - 49
  • [4] Pseudo-differential operators in the p-adic Lizorkin space
    Albeverio, S.
    Khrennikov, A. Yu.
    Shelkovich, V. M.
    [J]. P-ADIC MATHEMATICAL PHYSICS, 2006, 826 : 195 - +
  • [5] Hormander Classes of Pseudo-Differential Operators over the Compact Group of p-Adic Integers
    Velasquez-Rodriguez, J. P.
    [J]. P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2020, 12 (02) : 134 - 162
  • [6] Q-matrices as pseudo-differential operators with negative definite symbols
    Evans, Kristian
    Jacob, Niels
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 631 - 640
  • [7] p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators
    Vladimir Shelkovich
    Maria Skopina
    [J]. Journal of Fourier Analysis and Applications, 2009, 15 : 366 - 393
  • [8] p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators
    Shelkovich, Vladimir
    Skopina, Maria
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (03) : 366 - 393
  • [9] Linear and nonlinear pseudo-differential operators on p-adic fields
    Athira, N.
    Lineesh, M. C.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [10] Hörmander Classes of Pseudo-Differential Operators over the Compact Group of p-Adic Integers
    J. P. Velasquez-Rodriguez
    [J]. p-Adic Numbers, Ultrametric Analysis and Applications, 2020, 12 : 134 - 162