Some further classes of pseudo-differential operators in the p-adic context and their applications

被引:4
|
作者
Torresblanca-Badillo, Anselmo [1 ]
Albarracin-Mantilla, Adriana. A. A. [2 ]
机构
[1] Univ Norte, Dept Matemat & Estadist, Km 5 Via Puerto Colombia, Barranquilla, Colombia
[2] Univ Ind Santander, Escuela Matemat, Cra 27,Calle 9, Bucaramanga 680001, Santander, Colombia
关键词
Pseudo-differential operators; Heat kernel; Markov processes; Feller semigroups; Transition functions; p-Adic analysis; FELLER SEMIGROUPS; DIFFUSION;
D O I
10.1007/s11868-023-00514-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study new non-Archimedean pseudo-differential operators whose symbols are determined from the behavior of two functions defined on the p-adic numbers. Thanks to the characteristics of our symbols, we can find connections between these operators and new types of non-homogeneous differential equations, Feller semigroups, contraction semigroups and strong Markov processes.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Some further classes of pseudo-differential operators in the p-adic context and their applications
    Anselmo Torresblanca-Badillo
    Adriana A. Albarracín-Mantilla
    [J]. Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [2] New classes of p-adic pseudo-differential operators with negative definite symbols and their applications
    Torresblanca-Badillo, Anselmo
    Bolano-Benitez, Edwin A.
    Gutierrez-Garcia, Ismael
    Estala-Arias, Samuel
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
  • [3] Pseudo-differential operators in the p-adic Lizorkin space
    Albeverio, S.
    Khrennikov, A. Yu.
    Shelkovich, V. M.
    [J]. P-ADIC MATHEMATICAL PHYSICS, 2006, 826 : 195 - +
  • [4] Hormander Classes of Pseudo-Differential Operators over the Compact Group of p-Adic Integers
    Velasquez-Rodriguez, J. P.
    [J]. P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2020, 12 (02) : 134 - 162
  • [5] p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators
    Vladimir Shelkovich
    Maria Skopina
    [J]. Journal of Fourier Analysis and Applications, 2009, 15 : 366 - 393
  • [6] p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators
    Shelkovich, Vladimir
    Skopina, Maria
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (03) : 366 - 393
  • [7] Linear and nonlinear pseudo-differential operators on p-adic fields
    Athira, N.
    Lineesh, M. C.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [8] Hörmander Classes of Pseudo-Differential Operators over the Compact Group of p-Adic Integers
    J. P. Velasquez-Rodriguez
    [J]. p-Adic Numbers, Ultrametric Analysis and Applications, 2020, 12 : 134 - 162
  • [9] p-adic evolution pseudo-differential equations and p-adic wavelets
    Shelkovich, V. M.
    [J]. IZVESTIYA MATHEMATICS, 2011, 75 (06) : 1249 - 1278
  • [10] Fundamental solutions of pseudo-differential operators over p-adic fields.
    Zuniga-Galindo, WA
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2003, 109 : 241 - 245