Point Interactions in One Dimension and Holonomic Quantum Fields

被引:0
|
作者
Oleg Lisovyy
机构
[1] Bogolyubov Institute for Theoretical Physics,School of Theoretical Physics
[2] Dublin Institute for Advanced Studies,undefined
来源
关键词
point interactions; Schroedinger operators; tau functions; 34B10; 34M55;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a family of quantum fields, associated to δ-interactions in one dimension. These fields are analogous to holonomic quantum fields of Sato et al. in Holonomic quantum fields I–V (Publ. RIMS, Kyoto University, 14: 223–267, 1978; 15: 201–278, 1979; 15: 577–629, 1979; 15: 871-972, 1979; 16: 531–584, 1979). Corresponding field operators belong to an infinite-dimensional representation of the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{R})$$\end{document} in the Fock space of ordinary harmonic oscillator. We compute form factors of such fields and their correlation functions, which are related to the determinants of Schroedinger operators with a finite number of point interactions. It is also shown that these determinants coincide with tau functions, obtained through the trivialization of the det*-bundle over a Grassmannian associated to a family of Schroedinger operators.
引用
收藏
页码:63 / 81
页数:18
相关论文
共 50 条
  • [41] SELF-DUAL QUANTUM POTTS-MODEL WITH MULTISPIN INTERACTIONS IN ONE DIMENSION
    TURBAN, L
    DEBIERRE, JM
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (06): : L129 - L135
  • [42] Quantum Random Walks in One Dimension
    Norio Konno
    Quantum Information Processing, 2002, 1 : 345 - 354
  • [43] Hamiltonian quantum computer in one dimension
    Wei, Tzu-Chieh
    Liang, John C.
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [44] Shrinking quantum packets in one dimension
    Dodonov, VV
    Andreata, MA
    PHYSICS LETTERS A, 2003, 310 (2-3) : 101 - 109
  • [45] Quantum Random Walks in One Dimension
    Konno, Norio
    QUANTUM INFORMATION PROCESSING, 2002, 1 (05) : 345 - 354
  • [46] Superconducting quantum fluctuations in one dimension
    Semenov, A. G.
    Zaikin, A. D.
    PHYSICS-USPEKHI, 2022, 65 (09) : 883 - 919
  • [47] MODEL FOR QUANTUM TRANSITION IN ONE DIMENSION
    SCOTT, HL
    SUTHERLA.B
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 474 - 474
  • [48] Many-body system with a four-parameter family of point interactions in one dimension
    Coutinho, FAB
    Nogami, Y
    Tomio, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (26): : 4931 - 4942
  • [49] The physical interpretation of point interactions in one-dimensional relativistic quantum mechanics
    Bonin, C. A.
    Lunardi, Jose T.
    Manzoni, Luiz A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (09)
  • [50] Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
    Ruhman, Jonathan
    Kozii, Vladyslav
    Fu, Liang
    PHYSICAL REVIEW LETTERS, 2017, 118 (22)