Point Interactions in One Dimension and Holonomic Quantum Fields

被引:0
|
作者
Oleg Lisovyy
机构
[1] Bogolyubov Institute for Theoretical Physics,School of Theoretical Physics
[2] Dublin Institute for Advanced Studies,undefined
来源
关键词
point interactions; Schroedinger operators; tau functions; 34B10; 34M55;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study a family of quantum fields, associated to δ-interactions in one dimension. These fields are analogous to holonomic quantum fields of Sato et al. in Holonomic quantum fields I–V (Publ. RIMS, Kyoto University, 14: 223–267, 1978; 15: 201–278, 1979; 15: 577–629, 1979; 15: 871-972, 1979; 16: 531–584, 1979). Corresponding field operators belong to an infinite-dimensional representation of the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{R})$$\end{document} in the Fock space of ordinary harmonic oscillator. We compute form factors of such fields and their correlation functions, which are related to the determinants of Schroedinger operators with a finite number of point interactions. It is also shown that these determinants coincide with tau functions, obtained through the trivialization of the det*-bundle over a Grassmannian associated to a family of Schroedinger operators.
引用
收藏
页码:63 / 81
页数:18
相关论文
共 50 条
  • [31] STUDIES ON HOLONOMIC QUANTUM FIELDS .15. DOUBLE SCALING LIMIT OF ONE DIMENSIONAL XY MODEL
    JIMBO, M
    MIWA, T
    SATO, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1979, 55 (08) : 267 - 272
  • [32] Non-Markovian quantum Brownian motion in one dimension in electric fields
    Shen, H. Z.
    Su, S. L.
    Zhou, Y. H.
    Yi, X. X.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [33] Generalized point interactions in one-dimensional quantum mechanics
    Coutinho, FAB
    Nogami, Y
    Perez, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 3937 - 3945
  • [34] Quantum chaos in one dimension?
    Ujfalusi, Laszlo
    Varga, Imre
    Schumayer, Daniel
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [35] ON INTERACTING SPINOR FIELDS IN ONE DIMENSION
    THIRRING, W
    NUOVO CIMENTO, 1958, 9 (06): : 1007 - 1015
  • [36] Fermi pseudo-potential and energy-dependent point interactions in one dimension
    Tomio, L
    Coutinho, FAB
    Nogami, Y
    Toyama, FM
    Few-Body Problems in Physics, 2005, 768 : 456 - 457
  • [37] Holonomic quantum computation on microwave photons with all resonant interactions
    Dong, Ping
    Yu, Long-Bao
    Zhou, Jian
    LASER PHYSICS LETTERS, 2016, 13 (08)
  • [38] Point interactions in one-dimensional quantum mechanics with coupled channels
    Coutinho, FAB
    Nogami, Y
    Toyama, FM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (08): : 2989 - 2997
  • [39] Distributional approach to point interactions in one-dimensional quantum mechanics
    Calcada, Marcos
    Lunardi, Jose T.
    Manzoni, Luiz A.
    Monteiro, Wagner
    FRONTIERS IN PHYSICS, 2014, 2 : 1 - 10
  • [40] THE GENERALIZED POINT INTERACTION IN ONE DIMENSION
    SEBA, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1986, 36 (06) : 667 - 673